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ARTICLE INFO ABSTRACT
Keywords: Introduction: Precise localization of the epileptogenic zone is critical for successful epilepsy surgery. However,
Epilepsy imbalanced datasets in terms of epileptic vs. normal electrode contacts and a lack of standardized evaluation

Epileptogenic zone

Seizure onset zone

Epileptogenic tissue localization
Intracranial electroencephalography
Machine learning

guidelines hinder the consistent evaluation of automatic machine learning localization models.

Methods: This study addresses these challenges by analyzing class imbalance in clinical datasets and evaluating
common assessment metrics. Data from 139 drug-resistant epilepsy patients across two Institutions were
analyzed. Metric behaviors were examined using clinical and simulated data.

Binary classification
Evaluation metrics
Class imbalance

Results: Complementary use of Area Under the Receiver Operating Characteristic (AUROC) and Area Under the
Precision-Recall Curve (AUPRC) provides an optimal evaluation approach. This must be paired with an analysis
of class imbalance and its impact due to significant variations found in clinical datasets.

Conclusions: The proposed framework offers a comprehensive and reliable method for evaluating machine
learning models in epileptogenic zone localization, improving their precision and clinical relevance.
Significance: Adopting this framework will improve the comparability and multicenter testing of machine
learning models in epileptogenic zone localization, enhancing their reliability and ultimately leading to better
surgical outcomes for epilepsy patients.

1. Introduction

Approximately 40 % of patients with epilepsy do not respond to anti-
seizure medications (Chen et al. 2018). The most effective treatment

Epilepsy is one of the most common neurological disorders, affecting for these patients is surgery (Jehi 2018). To optimize surgical outcomes
more than 70 million people worldwide (Thijs et al. 2019). in this patient group, precise localization of the epileptogenic zone (EZ)
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is necessary (Vakharia et al. 2018). Invasive intracranial electroen-
cephalography (EEG) recordings through stereo-EEG (SEEG) are used to
delineate the cortical areas where seizures start and rapidly propagate
based on visual inspection of the SEEG signals (Frauscher et al. 2024).
However, traditional methods relying on visual inspection of recordings
by medical professionals are time-consuming and subjective. In recent
years, machine learning approaches have emerged as promising tools to
provide additional information for precise EZ localization from SEEG
recordings, potentially improving accuracy and saving time (Cimbalnik
et al. 2019; Bernabei et al. 2022; Gunnarsdottir et al. 2022; Grinenko
et al. 2018). The increasing number of such studies creates a need for
well-defined evaluation guidelines that consider the specific challenges
encountered in this field.

One of the primary challenges encountered in EZ localization is the
inherent imbalance within the analyzed data. Intracranial EEG re-
cordings including SEEG often exhibit a scarcity of samples corre-
sponding to the region of interest (EZ), leading to an
underrepresentation of EZ electrodes compared to non-EZ electrodes.
The class imbalance poses significant issues during both the training and
evaluation of machine learning models. In training, the algorithm may
become biased towards the majority class, affecting its ability to learn
patterns from the minority class adequately. This imbalance also im-
pacts the evaluation phase, where traditional metrics, such as accuracy,
may not effectively reflect the model’s performance due to the domi-
nance of the majority class, necessitating the use of evaluation metrics
suitable for imbalanced domains (He and Garcia 2009). Consequently,
addressing the class imbalance becomes crucial to ensuring that ma-
chine learning models are trained and evaluated in a manner that
accurately captures their performance in identifying the region of in-
terest within SEEG recordings. Additionally, the degree of class imbal-
ance varies among clinical datasets, introducing variability that
inevitably impacts the models’ outcomes. This variability, often over-
looked in studies, challenges the interpretability and comparability of
results. To tackle this issue effectively, adopting an evaluation frame-
work becomes imperative. Such a framework should comprehensively
assess model performance, prioritize the evaluation of the minority
class, and demonstrate robustness to variations in class distribution. By
adhering to these criteria, the chosen evaluation framework ensures a
more clinically relevant and standardized assessment of model perfor-
mance across diverse datasets.

Our study has three primary objectives. First, we will demonstrate
the prevalence of class imbalance in clinical datasets. Second, we will
rigorously analyze commonly used evaluation metrics in the field of EZ
localization, with special attention to their sensitivity to class imbal-
ance. Third, we will design a framework that proposes a standard
evaluation approach.

To demonstrate the issue of class imbalance and its variations across
clinical datasets, we analyzed the class distribution in a clinical dataset
of 139 patients gathered from two Institutions, namely St. Anne’s Uni-
versity Hospital in Brno (SAUH) and the Montreal Neurological Institute
& Hospital (MNI). Our analysis aimed to specifically highlight varia-
tions: (i) within patients from the same Institution, where differences
may emerge due to diverse pathologies and other factors influencing
implantation and resection strategies, (ii) within each Institution across
localization target definitions, as a result of a non-standardized
approximation of the potential EZ region (Jehi 2018), (iii) within each
Institution over time, reflecting how implantation strategies may evolve,
and lastly (iv) across different Institutions, where variations may arise
from distinct patient demographics, implantation protocols, or meth-
odology for target definition.

Subsequently, to comprehensively investigate the effect of the
inherent class imbalance on model results, we analyzed how changes in
class distributions affect commonly used evaluation metrics, namely
accuracy, Area Under the Receiver Operating Characteristic (AUROC),
Area Under the Precision-Recall Curve (AUPRC), and Fl-score. This
analysis is performed on both outputs of a simulated binary classifier, as
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well as real outputs of logistic regression models trained on clinical data,
serving as example models for EZ localization. In the analysis of clinical
data, we highlight the main limitations and advantages associated with
accuracy, AUROC, AUPRC, and F1-score through an examination of four
patient cases, and we show group analysis results across Institutions and
localization targets with different levels of class imbalance.

Based on our findings, we propose a combination of evaluation
metrics that comprehensively assess binary classification models for EZ
localization. By establishing a more robust and comprehensive evalua-
tion framework, our study aims to standardize the model evaluation
process. This standardization aims to ultimately enhance the overall
classification performance and reliability of machine learning models in
the critical task of automatic EZ localization for patients with drug-
resistant epilepsy.

2. Methods

To promote transparency and reproducibility of the methodology,
the codes for analysis of simulated and clinical data are available online
(https://gitlab.com/bbeer_group/public_codes/metrics-for-evaluation-
of-automatic-epileptogenic-zone-localization).

2.1. Patients

The patient cohort for the analysis of class imbalance consisted of all
consecutive adult patients with drug-resistant focal epilepsy who un-
derwent SEEG and subsequent resective surgery at SAUH between 2012
and 2022 and the MNI between 2009 and 2019. Patients without in-
formation on the seizure-onset zone (SOZ) or the resected contacts were
not considered for the study, resulting in a patient cohort of 139 patients
(59 from SAUH and 80 from the MNI). The study was approved by the
Brno Epilepsy Center — SAUH Research Ethics Committee and MNI
Ethics Review Board. All patients granted written informed consent in
accordance with the Declaration of Helsinki.

2.2. Localization target definition

In EZ localization studies, class imbalance refers to the ratio of the
target SEEG contacts, defined based on the approximation of the EZ, and
the non-target SEEG contacts outside the region of interest. In our study,
the localization target was identified according to the most common
approximations of the EZ as

(i) SOZ contacts (marked by visual inspection of SEEG by board-
certified epileptologists based on the earliest detectable changes at
seizure onset irrespective of the fast activity content (Spanedda, Cendes,
Gotman 1997)) (Saboo et al. 2021; Thomas et al. 2023; Conrad et al.
2023),

(ii) resected contacts (all contacts removed during surgery identi-
fied based on pre and postsurgical MRI) (Karunakaran et al. 2018;
Zweiphenning et al. 2022; Shahabi, Nair, Leahy 2023), and

(iii) resected SOZ contacts (SOZ contacts removed during surgery)
(Klimes et al. 2019; Bernabei et al. 2022).

2.3. Class imbalance analysis

To analyze the level of class imbalance in the data, we defined the
term “relative target size” as the percentage of target SEEG contacts from
the total number of all SEEG contacts used for analysis (all SEEG con-
tacts with a confirmed location inside the brain). We investigated the
distributions of relative target size values (i) within each Institution
across individual patients, (ii) within each Institution across the three
localization target definitions, (iii) within each Institution over time,
and (iv) across the two Institutions. The parts of the class imbalance
analysis are illustrated in Fig. 1, and the methodology is described in
detail in the Supplementary Material.
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Analysis of Class Imbalance in Clinical Datasets
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Fig. 1. Class imbalance in clinical datasets was analyzed in four different ways. (I.) Variability among patients: the brain diagrams show SEEG implantations for
patients 657 and 1630 and resected contacts in green, demonstrating the differences in the number and distribution of implanted electrode contacts and target
contacts. (II.) Variability across localization target definitions: the brain diagrams show the SOZ (blue), Resected (orange), and SOZ&Resected (green) contacts for
patient 71, showing how target definitions can vary in size. (IIl.) Changes over time: the plots illustrate how changes in relative target size at SAUH and the MNI were
analyzed over time (approximately 10 years). (IV.) Variability across Institutions: the panel shows how the class imbalance at SAUH and the MNI were compared for

different target definitions.

2.4. Metrics for evaluation of epileptogenic zone localization

2.4.1. Metric selection
In the evaluation of models for localizing the EZ in intracranial
electrophysiology studies, the following metrics are commonly used:

e Sensitivity, also known as “true positive rate” or “recall” (von
Ellenrieder et al. 2016; Sumsky and Santaniello (2019); Cimbalnik
et al. 2018)

Specificity, also known as “true negative rate” or ‘“selectivity”
(Klimes et al. 2019; Lai et al. 2020; Lundstrom, Brinkmann, Worrell
2021)

Positive Predictive Value (PPV), also known as “precision”
(Elahian et al. 2017; Gunnarsdottir et al. 2022; Jiang et al. 2022)
Negative Predictive Value (NPV) (Lundstrom, Brinkmann, Worrell
2021; Mooij et al. 2016; Wang et al. 2022)

Accuracy (Gunnarsdottir et al. 2022; Gireesh et al. 2023; Jose et al.
2023)

AUROC (Akter et al. 2020; Conrad et al. 2022; Wang et al. 2023)
AUPRC (Chybowski et al. 2024; Bernabei et al. 2022)

Fl1-score, also known as “F1-measure” (Gireesh et al. 2023; Modur
and Miocinovic 2015; Varotto et al. 2021)

Their definitions are provided in the Supplementary Material. While
each of the simple metrics (specificity, sensitivity, PPV, and NPV) plays a
crucial role in model evaluation, individually they offer only a limited
perspective on the model performance (Branco, Torgo, Ribeiro 2015).
Given these limitations, our analysis centered primarily on metrics that
evaluate the trade-off between the simple metrics, providing a more
comprehensive evaluation. Specifically, we focused on accuracy,
AUROC, AUPRC, and F1-score. Accuracy, despite being proven to be
unsuitable for imbalanced data (Provost, Fawcett, Kohavi 1998 Branco,
Torgo, Ribeiro 2015), is still one of the most frequently used metrics.
AUROC is the most widely adopted metric in imbalanced SEEG studies,
despite limitations caused by equal evaluation of both classes (Davis and
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Goadrich 2006; Webb and Ting 2005). On the other hand, AUPRC and
Fl-score are metrics that have been widely recommended for dealing
with imbalanced data within the machine learning community (Davis
and Goadrich 2006), yet these metrics are not commonly used in EZ
localization studies, suggesting a gap between general machine learning
practices and this specific field.

In our study, we highlighted the importance of accuracy, AUROC,
AUPRGC, and F1-score in offering a comprehensive view of model per-
formance and their limitations in dealing with imbalanced data, which is
a common occurrence in clinical datasets. While acknowledging their
limitations, we have chosen them for their relevance and use in epilepsy
diagnostics.

2.4.2. Metric chance levels

Comparing a model’s performance to chance levels is crucial as it
serves as a benchmark for assessing whether the model genuinely learns
from data or merely guesses. The definition of chance level performance
varies depending on the metric.

The chance level for accuracy, defined by the always negative clas-
sifier, depends on the class distribution. In a binary classification task, a
random classifier predicting all samples as non-target achieves accuracy
corresponding to the proportion of negative samples in the dataset.

The chance level for AUROC is 0.5 because it represents a scenario
where the true positive rate equals the false positive rate at all thresh-
olds, producing a diagonal line across the ROC space that covers half the
unit square (Fawcett 2006).

For the precision-recall metrics, the chance level is usually defined
by the always positive classifier, and it also depends on class distribu-
tion. Specifically, for AUPRC, the chance classifier’s performance is
equivalent to the precision (p) achieved when classifying all samples as
positive. This precision is directly tied to the proportion of positive
samples in the dataset, representing the relative target size. When
calculating the chance level for the F1-score, recall is set to 1, indicating
perfect recall, and the precision is set to the chance level precision (p).
The chance level Fl-score is then calculated using the F1-score formula
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as (2xp)/(p +1).
2.5. Metric analysis using simulated data

The Monte Carlo simulation was used to analyze how various eval-
uation metrics depend on the level of class imbalance of data in a binary
classification task, such as the classification of EZ vs. non-EZ contacts for
EZ localization. Here, the class imbalance is given by the relative size of
the localization target, which is defined based on one approximation of
the EZ, for example, as either the “SOZ”, the “Resected, or the
“SOZ&Resected” contacts as defined in Section 2.2. The Monte Carlo
method was used to approximate the results of a binary classification
model under a specified level of class imbalance and fixed classification
performance. By performing the simulation for a range of class imbal-
ance levels and classifier parameters, we analyzed how the classification
results change depending on those variables. The simulation process is
illustrated in Fig. 2 and described in detail in the Supplementary
Material.

2.6. Metric analysis using clinical data

To analyze metric properties on clinical data, three logistic regres-
sion EZ localization models were trained and evaluated, each corre-
sponding to a specific target definition (“SOZ”, “Resected”, and
“SOZ&Resected”). The models were used to classify electrode contacts
as either target (pathologic) or non-target (normal) based on the rate of
interictal epileptiform discharges (IEDs) detected in the SEEG signals.
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The patient selection process for the localization cohort, data pre-
processing, and the logistic regression models are described in detail in
the Supplementary Material.

Trained models were evaluated separately for each patient by met-
rics described in the Methods section. For group analysis, the results
across patient groups were compared using the Hanley-McNeil and
randomization tests, which are suitable for the comparison of results
across groups with different levels of class imbalance.

To confirm the superiority of higher metric scores over lower scores
across all statistical tests, we used a one-tailed approach designed spe-
cifically to assess whether the higher score was statistically greater than
the lower score. A Hanley-McNeil test (Hanley and McNeil 1982) was
used to compare AUROC values derived from independent ROC curves
(o = 0.05, one-tailed). Bonferroni correction was applied to maintain an
overall significance level of a = 0.05 across multiple comparisons,
yielding a corrected significance level of 0.017.

To assess the statistical significance of differences in accuracy,
AUPRC, and F1l-score values, we employed a randomization test
(Smucker, Allan, Carterette 2007) with Bonferroni correction (o = 0.05,
one-tailed). The test involves shuffling ground truth labels and recom-
puting metric values in numerous permutations. By comparing the
observed differences in metric values between Model A and Model B
with the distribution of differences from shuffled permutations, we ob-
tained a p-value for each of the metrics. We performed 1000 permuta-
tions, ensuring both statistical robustness and computational efficiency.

Monte Carlo Simulation Model
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Fig. 2. A. Classification results were simulated using the Monte Carlo method: 1) In a single iteration of the Monte Carlo simulation, a vector of predicted labels y
was generated based on the vector of ground truth labels y and the model’s classification accuracy (TPR, TNR). Samples in the y and y vectors represent SEEG
contacts, each with a ground truth label y; (1 for target and O for non-target) and a label predicted by the classification model y; (1 for target and O for non-target).
Size of both vectors was 100 samples. 2) The simulation was repeated 1100 times to generate 1100 samples of the predicted label vector y. 3) Classification results
were evaluated for each iteration, illustrated by multiple dashed lines, and averaged to obtain the most probable performance of the classifier under given conditions.
B. In an inner loop, the Monte Carlo simulation (block A) was performed 100 times, each time for a ground truth label vector y with a different relative target size
(RTS) (1 to 100%). C. In an outer loop, the inner loop (block B) was repeated for 5 classifiers, illustrated by multiple dashed lines, with classification performance

defined by true positive rate (TPR) and true negative rate (TNR).
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3. Results
3.1. Patients

A cohort of 139 patients, with 59 patients from SAUH and 80 patients
from the MNI, was included in the analysis of class imbalance. For
additional patient information, please refer to the Supplementary Pa-
tient Table.

3.2. Class imbalance analysis

Across both Institutions and all localization target definitions, the
localization target constituted a median (interquartile range, IQR) of
8.89 % (14.24 %) of all electrode contacts per patient, with 50 % of
values between 3.88 % and 18.12 % of relative target size. The range of
relative target size values between 4 and 18 % will further be used as a
range of interest in Monte Carlo simulation results. The distribution of
relative target size values across patients, localization targets, and
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Institutions, along with statistical test results, is visualized in Fig. 3.

In the SAUH dataset, 1.12 % to 13.46 % of contacts were marked as
SOZ by clinicians, 0.54 % to 36.47 % of contacts were resected during
surgery, and 0 % to 12.94 % were resected SOZ contacts. In the MNI
dataset, between 2.22 % to as much as 85.92 % of contacts were marked
as SOZ, 2.42 % to 66.71 % of contacts were resected during surgery, and
0 % to 42.25 % were resected SOZ contacts. None of the analyzed data
distributions were normally distributed. Basic statistics and the
normality test results for all distributions are summarized in Supple-
mentary Table S1.

The class imbalance between the target definitions was significantly
different for both Institutions, with p-values below 0.0001 (Kruskal-
Wallis test). In the SAUH dataset, post hoc testing revealed significant
variations in class imbalance for all targets. In the MNI dataset, while the
“SOZ&Resected” target showed significant differences from the other
targets, the variations in class imbalance between “SOZ” and “Resected”
were not significant. The complete results of the analysis are shown in
Supplementary Table S2.

Variations in relative target size across the patient cohort
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The temporal variations in class imbalance were examined by
analyzing the relationship between the relative target size and the date
of SEEG implantation (used as a proxy for time). For the SAUH dataset,
the percentage of resected contacts per patient decreased significantly
between 2012 and 2022 (Spearman’s correlation coefficient (SCC) =
-0.42, p-value = 0.002). In contrast, the percentage of SOZ and resected
SOZ contacts showed no significant change. For the MNI patients, the
analysis revealed no significant correlations, suggesting that the relative
size of none of the localization targets has changed over time. The de-
pendency plots and analysis results are depicted in Fig. 4.

The explanation of the changes in relative target size occurring over
time may lie in the significant increase in the total number of implanted
electrode contacts per patient, which was found at both Institutions
(SCC of 0.63 at SAUH and 0.43 at the MNI), as visualized in Supple-
mentary Figure 1.

For all localization target definitions, the class imbalance between
the two Institutions was different, with a significantly larger class
imbalance at the MNI as compared to SAUH patients (p < 0.001), as
shown in Fig. 3. The effect size was large for all comparisons with Cliff’s
delta of 0.84, 0.56, and 0.70 for the “SOZ”, “Resected” and
“SOZ&Resected” targets, respectively, showing the largest difference in
the relative counts of contacts determined to be in the SOZ by clinicians
across the Institutions. The SOZ contacts constituted a median (inter-
quartile range, IQR) of 3.75 % (3.43 %) of all contacts implanted per
patient at SAUH and, in contrast, 15.38 % (12.51 %) at the MNI. Simi-
larly, the median (IQR) percentage of contacts resected during surgery
was 9.26 % (11.71 %) at SAUH compared to 17.49 % (16.16 %) at the
MNI and median of 2.76 % (2.24 %) of contacts were SOZ contacts
resected during surgery at SAUH and 6.85 % (6.08 %) at the MNI.
Subsequent analysis of the differences in absolute target size (number of
target electrode contacts) across Institutions with the Mann-Whitney
test also showed significant differences for all target definitions. The
complete results are provided in Supplementary Table S3 and S4.
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3.3. Metric analysis using simulated data

3.3.1. Monte Carlo simulation

During the Monte Carlo simulation, we fixed the model’s classifica-
tion accuracy for both the positive and negative classes (TPR, TNR) and
varied the relative target size of input data between 1 % and 100 %. This
simulation aimed to observe the effect of class imbalance on the eval-
uation metrics. The outcomes of this simulation are depicted in Fig. 5.
Notably, a critical range between 4 % and 18 % relative target size is
emphasized to reflect the range observed in clinical datasets.

The sensitivity (TPR) and specificity (TNR) plots depict the
consistent behavior of simulated models in classifying positive and
negative samples. In contrast, the PPV and NPV metrics showed a
distinct dependency on class distribution. As the relative target size
increased, PPV rose while NPV declined, despite the model’s consistent
performance, illustrating their lack of robustness to class imbalance
variations.

The accuracy plot demonstrates the assignment of equal weight to
both classes and why this metric is unacceptable in imbalanced domains.
For small relative target sizes, the accuracy metric is predominantly
influenced by the accuracy in classifying the non-target samples
(quantified by TNR), resulting in values around 0.9 for all models in our
simulation. Consequently, a specific accuracy value, such as 0.85, may
be achieved by multiple classifier models. This property makes it
impossible to distinguish the superior classifier based on accuracy value
without the knowledge of the level of class imbalance.

The AUROC metric stands out among the analyzed metrics as it
demonstrated independence on relative target size. Its consistency
despite changes in relative target size makes AUROC a reliable measure
for discriminating superior classifiers in terms of their overall perfor-
mance. Nevertheless, the AUROC metric assigns equal weight to both
classes, which can lead to an overly optimistic evaluation in datasets
with a majority of non-target samples. This issue is demonstrated in an
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38



V. Hrtonova et al.

Clinical Neurophysiology 169 (2025) 33-46

Metric sensitivity to variations in relative target size

—— CLL(TPR=0.9,TNR=0.9) —— CL2(TPR=0.7, TNR =0.9)

—— CL3 (TPR = 0.5, TNR = 0.9)

— CL4(TPR=0.3,TNR=0.9) —— CL5(TPR=0.1, TNR =0.9)

10 20 30 40 50 60 70 80 90 100

1.0 : 1.0 1.0 1.0
0.9 4=~ 0.9 ———| 09 0.9
0.8 | 0.8 0.8 0.8
0.7 07 0.7 0.7
206 206 0.6 0.6
£ 0.5 { hrt 05 205 205
c g o Z
&o0.4 &0.4 0.4 0.4
0.3{ -~~~ 03 0.3 03
0.2 02 0.2 0.2
0.1{ 0.1 0.1 / 0.1
0.0 0.0+ 0.0 0.0
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Relative target size [%] Relative target size [%] Relative target size [%] Relative target size [%]
1.0 10— 1.0 1.0
0.9 fo—rt 0.9 ——i 0.9 0.9
0.8 \ 0.8 : 0.8 0.8
0.7 0.7 1 —rdl 0.7 0.7
506 067 06 006
© o) H & ]
Sos g 0.5{ — gos S0.5
v 2 \
] Ed N
<04 <04 04 To4 i
0.3 0.3 0.3 0.3 :
0.2 0.2 0.2 0.2
0.1 0.1 0.1 011~
0.0 L 0.0 L 0.0 0.0 L
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 I 0 10 20 30 40 50 60 70 80 90 100

Relative target size [%] Relative target size [%]
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models (CL1-5). Models are defined by true positive rate (TPR) and true negative rate (TNR). The range between 4 and 18% relative target size, found in clinical data,

is highlighted.

additional simulation in Supplementary Figure 2.

In contrast, the AUPRC metric exhibited a direct dependency on
class imbalance levels, displaying variations in its values in response to
changes in the relative target size. High metric values were observed in
scenarios with higher relative target size values, signifying less imbal-
anced data. Conversely, lower AUPRC values were observed in instances
of greater class imbalance. Consequently, relying solely on AUPRC
proves insufficient for effectively distinguishing between strong and
weak classifiers, as the class distribution heavily influences its outcomes
in the dataset. To illustrate, a classification result of AUPRC = 0.3 could
be produced by either of three classifiers, contingent on the specific class
imbalance level.

The F1-score exhibited similar properties to the AUPRC, particularly
when non-target samples dominated the dataset. Similar to AUPRC, the
F1-score showed a dependency on the relative target size and favored
less imbalanced data. Consequently, the Fl-score faced similar chal-
lenges as AUPRC when distinguishing between classifiers based solely
on the metric values. This was particularly evident in the lower ranges of
relative target size values prevalent in EZ localization datasets.

As such, reporting these metrics in the context of imbalanced data-
sets requires careful consideration of the class distribution to avoid
potentially biased conclusions about model performance.

3.4. Metric analysis using clinical data

The patient cohort was further refined according to the criteria
described in the Supplementary Methods section, resulting in a locali-
zation patient cohort of 25 patients, with 8 gathered from SAUH and 17
from the MNI. Logistic regression models, each trained and tested on a
specific localization target (“SOZ”, “Resected”, and “SOZ&Resected”),
were evaluated for each patient through a leave-one-patient-out cross-
validation approach for the localization of their respective targets. A
median (IQR) of 9.2 % (13.3 %) of all contacts per patient was identified
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as the SOZ. In contrast, a median of 10.7 % (18.4 %) of contacts per
patient was resected during the surgical intervention, while a median of
5.7 % (6.0 %) constituted SOZ contacts within the resected zone.

To analyze the evaluation metrics, we present four clinical cases
from the localization cohort, highlighting specific limitations and ad-
vantages associated with selected metrics. Then, we show two examples
of group analysis of results (across Institutions and across localization
targets), including suitable statistical testing for datasets with different
levels of class imbalance, and interpretation of the results.

3.4.1. Accuracy: Unmasking suboptimal performance

Solely relying on accuracy as an evaluation metric can be misleading,
as exemplified by the case of patient number 89. Despite a high accuracy
score of 0.953, a closer examination of the confusion matrix in Fig. 6
reveals the model as a no-skill classifier, misclassifying all electrodes as
normal. The model achieved an Fl-score of zero, with AUROC and
AUPRC values only marginally exceeding chance levels, thus exposing
the shortcomings of accuracy in reflecting true model performance
within imbalanced datasets.

3.4.2. AUROC: An incomplete picture

The inadequacy of AUROC in addressing imbalanced data is high-
lighted by the case of patient 77, presented in Fig. 7. Despite a seemingly
high AUROC of 0.970 for localizing “SOZ&Resected” contacts, a detailed
analysis of AUPRC shows a less optimistic perspective. The AUPRC,
which represents the model’s average precision, indicates the overall
ability of the model to localize the target with an average precision of
0.236 across all possible classification targets, although for the threshold
chosen by the model, the Fl-score was zero. This suggests that the
model’s predictions, while achieving a high AUROC, have limited clin-
ical relevance as a substantial portion of the predicted positive instances
does not correspond to actual positive cases. Additionally, the model
yielded an Fl-score of zero since no target contacts were correctly
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Fig. 6. Classification results for patient 89 and “SOZ&Resected” model, including the confusion matrix (A), model results with corresponding chance levels (B), and
visualization of SEEG contacts projected on a standard MNI brain model with ground truth (C) and predicted labels (D). Contacts with black edges have a positive

label, while contacts with gray edges have negative labels. The color gradient symbolizes the scores assigned to each contact by the classifier normalized to a range
between 0 and 1.
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Fig. 7. Classification results for patient 77 and “SOZ&Resected” model, including the confusion matrix (A), model results with corresponding chance levels (B), and
visualization of SEEG contacts projected on a standard MNI brain model with ground truth (C) and predicted labels (D). Contacts with black edges have a positive

label, while contacts with gray edges have negative labels. The color gradient symbolizes the scores assigned to each contact by the classifier normalized to a range
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identified with the proposed threshold. This case underscores the risk of
overly optimistic conclusions based on high AUROC values, especially in
EZ localization where the underrepresented positive class holds primary
importance.

3.4.3. AUPRC: Addressing class imbalance

The limitations of AUPRC are exemplified in the case of patient 1153
and “SOZ” localization, illustrated in Fig. 8. Despite achieving a high
AUPRC of 0.817, the high proportion (51.5 %) of target SOZ contacts
calls the metric’s validity into question. Even a naive strategy of labeling
all contacts as positive would yield an AUPRC of 0.515, raising concerns
about the clinical relevance of the model’s performance. The inherent
imbalance leads to an inflated AUPRC, emphasizing the need for a
nuanced interpretation and consideration of alternative metrics, such as
AUROC. In this case, AUROC showed an average performance of 0.786,
aligning with the model’s suboptimal accuracy of 0.495 (slightly above
chance) and an F1-score of 0.038. These findings underscore the model’s
limitations, which could not be captured by the AUPRC, and emphasize
the need for a comprehensive evaluation strategy that goes beyond in-
dividual metrics.

3.4.4. Fl-score: Balancing precision and recall

The significance of the F1-score is underscored in the case of patient
965 and the “SOZ&Resected” model, shown in Fig. 9. Despite the
model’s success in assigning higher scores to target contacts, reflected in
excellent AUROC and AUPRC values of 0.996 and 0.917, it struggled to
identify an optimal classification threshold to distinguish between target
and non-target contacts. The Fl-score of 0.5 indicates a suboptimal
trade-off between precision and recall, offering valuable insights into
the model’s performance and its clinical relevance..
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3.5. Group analysis — Across Institutions

To perform a group analysis across Institutions, patient results were
aggregated separately for each Institution and evaluated by comparing
results between two Institutions, SAUH and the MNI, across four eval-
uation metrics: accuracy, AUROC, AUPRC, and F1-score. This evaluation
example simulates the real-life scenario of cross-institutional testing,
which is essential for model validation. The results for model “SOZ”,
depicted in Fig. 10, reveal important insights into the model’s effec-
tiveness at each Institution. Results for “Resected” and “SOZ&Resected”
models are visualized in Supplementary Figure S3.

Firstly, the accuracy metric with median values of 0.953 for SAUH
and 0.873 for the MNI shows no statistically significant difference be-
tween the two Institutions (p = 0.996). This suggests that the “SOZ”
model performs similarly in terms of accuracy at both Institutions
despite the difference in metric values.

In terms of AUROC, the median values were 0.791 for SAUH and
0.895 for the MNI. With a p-value of 0.379, this difference was also not
statistically significant, suggesting that the ability of the “SOZ” model to
distinguish between classes is comparable at both Institutions.

A notable difference was observed in the AUPRC metric, where
SAUH had a median value of 0.277, significantly lower than the 0.817
observed for the MNI (p < 0.001). This implies that the MNI’s model
performance in terms of precision-recall trade-off is markedly better
than that of SAUH.

Lastly, the F1-score showed median values of 0.292 for SAUH and a
significantly better score of 0.400 for the MNI (p = 0.015). This indicates
that the MNI achieves a better harmonic mean of precision and recall
compared to SAUH.

In summary, while the model showed higher accuracy scores for
SAUH, a more comprehensive analysis of model performance revealed a
significant superiority of AUPRC and F1-score performance for the MNI.
These findings suggest that while the model’s ability to correctly classify
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Fig. 8. Classification results for patient 1153 and “SOZ” model, including the confusion matrix (A), model results with corresponding chance levels (B), and
visualization of SEEG contacts projected on a standard MNI brain model with ground truth (C) and predicted labels (D). Contacts with black edges have a positive
label, while contacts with gray edges have negative labels. The color gradient symbolizes the scores assigned to each contact by the classifier normalized to a range
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V. Hrtonova et al.

Clinical Neurophysiology 169 (2025) 33-46

Patient 965
SOZ&Resected

(a) Confusion matrix

Ground truth label

3 Positive = Negative Total
§ Positive 1 0 1
% Negative 2 83 85
o
Total 3 83 RTS = 35%
(b) Classification results
Result Chance
Accuracy 0.977 0.965
AUROC 0.996 0.500
AUPRC 0.917 0.035
F1-score 0.500 0.067

(c) Ground truth

@ target contact
O non-target contact
1
(d) Classifier output
0.75
°
]
]
)
0.5 13
8
°
£l
0.25
. predicted as target
(o) predicted as non-target
0
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Fig. 10. Group analysis of the “SOZ” model’s predictions reveals significantly better performance for the MNI. The distributions of classification metrics across
patients from SAUH (N = 8) and the MNI (N = 17) are visualized, with a horizontal line as the median. Results of statistical testing (randomization test for accuracy,
AUPRC and F1-score, and Hanley-McNeil test for AUROC) are reported with significant results in bold.

instances is similar at both Institutions, the MNI benefits from better
precision-recall characteristics considering the class imbalance in
respective datasets.

3.6. Group analysis — Across localization targets

For group analysis across localization targets, patient results were
aggregated across all 25 patients in the localization cohort and evalu-
ated by comparing results of the three models, (“SOZ”, “Resected”, and
“SOZ&Resected”), across four evaluation metrics: accuracy, AUROC,
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AUPRGC, and F1-score. A summary of the results is presented in Fig. 11
with complete results in Supplementary Table S6.

The model trained for localizing “SOZ&Resected” contacts demon-
strated the highest accuracy (0.953), outperforming “SOZ” (0.907) and
“Resected” (0.893) models in the localization of their respective targets.
However, the differences in accuracy values lacked statistical signifi-
cance when tested with the randomization test. In terms of AUROC,
“SOZ&Resected” (0.895) outperformed both the “SOZ” (0.870) and
“Resected” (0.787) models with statistical significance (p-values of
0.006 and < 0.001) measured by the Hanley-McNeil test. The model
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Fig. 11. On the left, the relative target size (RTS) for “SOZ” (blue), “Resected” (orange), and “SOZ&Resected” (green) targets are visualized. On the right, the
distributions of classification metrics across cross-validation folds for the “SOZ”, “Resected”, and “SOZ&Resected” classification models are visualized, with a
horizontal line as the median and the median values reported for each boxplot. Results of statistical testing (randomization test for accuracy, AUPRC and F1-score,
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< p = 0.001, ****: p <= 0.0001.

aimed at localizing “SOZ” contacts, with an AUPRC of 0.655, signifi-
cantly outperformed the remaining models (p-value < 0.001) in a
randomization test. The “Resected” contacts localization model followed
with an AUPRC of 0.567 and the “SOZ&Resected” model with an AUPRC
of 0.507 without a significant difference between the two results. The
“S0OZ” model achieved the best F1-score of 0.333, followed again by the
“Resected” model with a score of 0.286 without a significant difference
and the “SOZ&Resected” model with a score of 0.

Based on the results, we may conclude that the “SOZ&Resected”
model has outperformed the remaining models in terms of their overall
ability to assign higher scores to target contacts and lower scores to non-
target contacts. However, in our dataset, the median relative size of the
“SOZ&Resected” target (5.7 %) was significantly smaller than both the
“SOZ” target (9.2 %) and the “Resected” target (10.7 %). The non-target
contacts, which constitute 94.3 % of all contacts for the “SOZ&Resected”
target, are easier to classify since they provide more training samples for
the machine learning model. Consequently, the AUROC result may be
driven by an excellent performance of the “SOZ&Resected” model in
classifying the non-target contacts, potentially resulting in an overly
optimistic assessment of the localization model’s performance. In terms
of performance focused on the target contacts, the “SOZ” model has
shown the best results as it outperformed the remaining models in
AUPRC with statistical significance. To interpret the achieved AUPRC
value, on average over all possible classification thresholds, a median of
65.5 % of the contacts marked as SOZ by the “SOZ” model were actual
SOZ contacts per patient.

Supplementary Figure S4 visualizes the ROC and PR curves to
illustrate model performance over the range of classification thresholds.

4. Discussion

This study has systematically addressed the pivotal challenges in
evaluating EZ localization models, presenting an in-depth analysis of
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commonly used evaluation metrics within this domain. Previous
research, such as the work by Bernabei et al. (Bernabei et al. 2023) has
highlighted several pitfalls in automatic EZ localization, including the
significant variability in data related to implant types, therapeutic ap-
proaches, underlying pathologies, and outcome metrics. Furthermore,
contributions from studies by Zhao et al. (Zhao et al. 2022) and Varotto
et al. (Varotto et al. 2021) have advanced our understanding in areas of
data augmentation and classification model design to mitigate some of
these challenges. Despite these advancements, our study represents the
first investigation into evaluating EZ localization models in intracranial
electrophysiology, with a particular focus on the implications of class
imbalance.

Our main findings underscore that relying solely on any single of the
analyzed metrics provides an incomplete perspective on model perfor-
mance, particularly when not accounting for class imbalance inherent in
clinical datasets. Simple metrics like specificity, recall, precision, and
negative predictive value, while straightforward, fail to assess model
performance comprehensively. Similarly, widely used metrics such as
accuracy, AUROC, AUPRGC, and F1-score each fail to adequately address
at least one of the unique challenges EZ localization poses. A combina-
tion of AUROC and AUPRC is therefore advised for robust evaluation.

4.1. Impact of class imbalance on model evaluation

The analysis of class imbalance in the clinical datasets clearly dem-
onstrates the issue we face in the field of automatic EZ localization. Due
to the different class distributions in the datasets, it is important to
conduct appropriate statistical testing and acknowledge the impact of
class imbalance on each metric when interpreting the results.

Patient-level evaluations, especially for datasets where the propor-
tion of target to non-target contacts ranges widely (e.g., 3 % to 86 % SOZ
contacts in the MNI dataset), must be approached with caution. The
chance levels of precision-recall metrics, such as PPV, AUPRC, or F1-
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score, span over a broad range of values, depending on the range of class
imbalance in the data, emphasizing the importance of understanding
class distributions for objective metric interpretation.

Moreover, the method of approximation of the EZ significantly im-
pacts class distribution, as demonstrated in both Institutions. When
comparing results for models trained on identical patients but under
different target definitions, the differences in class distributions among
the targets result in differences in metric chance levels. Given these
circumstances, conventional paired tests become unsuitable, and alter-
native statistical methods must be considered. In our study, we propose
the Hanley-McNeil test for the comparison of two independent AUROC
values and the randomization test for the comparison of independent
accuracy, AUPRC, and F1-score values.

Throughout our analysis, we also observed variations in the relative
size of targets over time within one Institution. Notably, at SAUH, there
was a significant decrease in the relative number of resected contacts
from 2012 to 2022, attributed to a simultaneous increase in the total
number of implanted contacts at the Institution. In contrast, we did not
detect significant changes in relative target sizes at the MNI, although
there was a noteworthy increase in the overall number of implanted
contacts. This underscores the importance of exercising caution when
splitting data into training and testing datasets in retrospective studies
to avoid accentuating differences in class imbalance through the split.

Cross-institutional validation is crucial for assessing model general-
ization abilities (Jehi 2023). Our analysis revealed notable differences in
class imbalance within clinical datasets from SAUH and the MNI across
all target definitions. This underscores the importance of considering
class distribution when interpreting the results of cross-institutional
testing and the necessity to employ suitable statistical tests, such as
the Hanley-McNeil and randomization tests, as demonstrated in the
group analysis.

4.2. Critical analysis of common evaluation metrics

To summarize the main findings from the metric analysis, none of the
commonly used evaluation metrics meets all the criteria defined for the
evaluation framework. The criteria were that the evaluation framework
must (i) comprehensively assess model performance, (ii) emphasize the
evaluation of the minority class, and (iii) be robust to variations in class
distribution.

Sensitivity, specificity, PPV, and NPV do not comprehensively eval-
uate the model performance since they focus only on a limited aspect of
model performance. Accuracy weights each class according to its fre-
quency in the dataset, leading to misleading conclusions in imbalanced
datasets. AUROC, by assigning equal weight to both pathologic and
normal contacts, tends to be influenced by the more prevalent negative
class samples (i.e., normal contacts), which are of less clinical interest.
This can potentially result in an overly optimistic evaluation since
majority-class samples are typically easier to classify correctly compared
to minority-class samples. As demonstrated in Supplementary Figure S2,
AUROC cannot capture the difference between accuracy on the minority
positive class (TPR) and accuracy on the majority negative class (TNR),
although TPR is undeniably more relevant in EZ localization. In contrast,
precision-recall metrics, including AUPRC and the F1-score, prioritize
the minority class, representing pathologic contacts critical for accurate
diagnosis and treatment in EZ localization. However, these metrics
inherently favor less imbalanced data and are not robust to changes in
class distribution.

4.2.1. Alternatives beyond traditional metrics

Alternative metrics that directly address the imbalance problem
exist, such as balanced accuracy and localized ROC. Balanced accuracy,
for example, averages the sensitivity and specificity, thus treating both
classes equally regardless of their size in the dataset and, therefore,
suffering the same limitation as AUROC. Localized ROC, or variations
that focus on specific regions of the ROC curve, can provide insights into
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the performance of a model at clinically relevant decision thresholds. By
focusing on the trade-offs between sensitivity and specificity in a
balanced manner, these metrics can offer a more detailed view of model
performance in contexts where certain errors are more costly than
others. However, clinical datasets are inherently imbalanced, often
significantly so, and metrics that require balanced conditions for optimal
evaluation could, therefore, provide a distorted view of how a model
performs in actual clinical settings.

Due to the sensitivity of AUPRC to class imbalance, several studies
have proposed modifications to this metric based on its normalization.
Boyd et al. (Kendrick, 2012) point out the existence of an “unachievable
region” in the PR space, which limits the possible AUPRC values a model
can achieve depending on the level of class imbalance in the data. As a
solution, they propose the Area Under the Normalized PR Curve
(AUCNPR), which is essentially the value of AUPRC normalized to a
range of its achievable values. Flach and Kull (Flach and Kull 2015)
rigorously analyzed the shortcomings of PR metrics and plots and
defined a new metric, “AUPRC Gain”, as an alternative to AUPRC robust
to changes in class distribution. Although both of the metrics show po-
tential in addressing the sensitivity of AUPRC to class imbalance, neither
of them proved to be completely robust to variations in relative target
size in our analysis, as visualized in Supplementary Figure S5.

4.3. Recommendations for robust model evaluation

Based on our findings, we recommend reporting AUROC and AUPRC
values as primary model results. AUROC, a widely accepted metric,
assesses the overall model performance, maintaining robustness to class
imbalance variations. Conversely, AUPRC provides insights into the
model’s performance on target contacts, emphasizing its clinical utility,
as the value of AUPRC represents the average precision at different
thresholds of the model in localizing the EZ. To address AUPRC bias
towards less imbalanced data, it is essential to report chance levels.
Together, these metrics comprehensively capture key aspects of model
performance.

To supplement these metrics, we suggest including the F1-score
when a specific threshold’s performance is of interest. However, the
F1-score should not be used as a substitute for AUPRC. Alternatively, the
generalized Fg-score allows customization based on specific needs,
emphasizing precision (with a lower beta, e.g., 0.5) or recall (with a
higher beta, e.g., 2) depending on the application. This adaptability suits
scenarios like defining the localization target as resected contacts or SOZ
contacts resected during surgery, respectively, and provides further
clinical insight.

Additionally, we suggest statistical tests (Hanley-McNeil and
randomization tests) that enable effective model comparisons, accom-
modating different class distributions in training datasets.

5. Conclusions

In conclusion, we propose that the value of AUROC and AUPRC
should be reported together for a comprehensive assessment of binary
classification models for epileptogenic zone localization. Alongside
metric values, it is crucial to report the class distribution and its impact
on classification results should be discussed to draw valid conclusions
about model performance. Furthermore, the inclusion of the F1-score is
recommended when evaluating class assignments of samples. The
adoption of this evaluation framework will not only enhance the
comparability of study results but also contribute to the development of
more reliable machine-learning models for epileptogenic zone locali-
zation in intracranial electrophysiology. By systematically addressing
the challenges of class imbalance and providing a robust analytical
framework, our study lays a foundation for more accurate and clinically
relevant evaluations, ensuring better generalization of models across
diverse clinical datasets.
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