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A B S T R A C T

Introduction: Precise localization of the epileptogenic zone is critical for successful epilepsy surgery. However, 
imbalanced datasets in terms of epileptic vs. normal electrode contacts and a lack of standardized evaluation 
guidelines hinder the consistent evaluation of automatic machine learning localization models.
Methods: This study addresses these challenges by analyzing class imbalance in clinical datasets and evaluating 
common assessment metrics. Data from 139 drug-resistant epilepsy patients across two Institutions were 
analyzed. Metric behaviors were examined using clinical and simulated data.
Results: Complementary use of Area Under the Receiver Operating Characteristic (AUROC) and Area Under the 
Precision-Recall Curve (AUPRC) provides an optimal evaluation approach. This must be paired with an analysis 
of class imbalance and its impact due to significant variations found in clinical datasets.
Conclusions: The proposed framework offers a comprehensive and reliable method for evaluating machine 
learning models in epileptogenic zone localization, improving their precision and clinical relevance.
Significance: Adopting this framework will improve the comparability and multicenter testing of machine 
learning models in epileptogenic zone localization, enhancing their reliability and ultimately leading to better 
surgical outcomes for epilepsy patients.

1. Introduction

Epilepsy is one of the most common neurological disorders, affecting 
more than 70 million people worldwide (Thijs et al. 2019). 

Approximately 40 % of patients with epilepsy do not respond to anti- 
seizure medications (Chen et al. 2018). The most effective treatment 
for these patients is surgery (Jehi 2018). To optimize surgical outcomes 
in this patient group, precise localization of the epileptogenic zone (EZ) 
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is necessary (Vakharia et al. 2018). Invasive intracranial electroen
cephalography (EEG) recordings through stereo-EEG (SEEG) are used to 
delineate the cortical areas where seizures start and rapidly propagate 
based on visual inspection of the SEEG signals (Frauscher et al. 2024). 
However, traditional methods relying on visual inspection of recordings 
by medical professionals are time-consuming and subjective. In recent 
years, machine learning approaches have emerged as promising tools to 
provide additional information for precise EZ localization from SEEG 
recordings, potentially improving accuracy and saving time (Cimbalnik 
et al. 2019; Bernabei et al. 2022; Gunnarsdottir et al. 2022; Grinenko 
et al. 2018). The increasing number of such studies creates a need for 
well-defined evaluation guidelines that consider the specific challenges 
encountered in this field.

One of the primary challenges encountered in EZ localization is the 
inherent imbalance within the analyzed data. Intracranial EEG re
cordings including SEEG often exhibit a scarcity of samples corre
sponding to the region of interest (EZ), leading to an 
underrepresentation of EZ electrodes compared to non-EZ electrodes. 
The class imbalance poses significant issues during both the training and 
evaluation of machine learning models. In training, the algorithm may 
become biased towards the majority class, affecting its ability to learn 
patterns from the minority class adequately. This imbalance also im
pacts the evaluation phase, where traditional metrics, such as accuracy, 
may not effectively reflect the model’s performance due to the domi
nance of the majority class, necessitating the use of evaluation metrics 
suitable for imbalanced domains (He and Garcia 2009). Consequently, 
addressing the class imbalance becomes crucial to ensuring that ma
chine learning models are trained and evaluated in a manner that 
accurately captures their performance in identifying the region of in
terest within SEEG recordings. Additionally, the degree of class imbal
ance varies among clinical datasets, introducing variability that 
inevitably impacts the models’ outcomes. This variability, often over
looked in studies, challenges the interpretability and comparability of 
results. To tackle this issue effectively, adopting an evaluation frame
work becomes imperative. Such a framework should comprehensively 
assess model performance, prioritize the evaluation of the minority 
class, and demonstrate robustness to variations in class distribution. By 
adhering to these criteria, the chosen evaluation framework ensures a 
more clinically relevant and standardized assessment of model perfor
mance across diverse datasets.

Our study has three primary objectives. First, we will demonstrate 
the prevalence of class imbalance in clinical datasets. Second, we will 
rigorously analyze commonly used evaluation metrics in the field of EZ 
localization, with special attention to their sensitivity to class imbal
ance. Third, we will design a framework that proposes a standard 
evaluation approach.

To demonstrate the issue of class imbalance and its variations across 
clinical datasets, we analyzed the class distribution in a clinical dataset 
of 139 patients gathered from two Institutions, namely St. Anne’s Uni
versity Hospital in Brno (SAUH) and the Montreal Neurological Institute 
& Hospital (MNI). Our analysis aimed to specifically highlight varia
tions: (i) within patients from the same Institution, where differences 
may emerge due to diverse pathologies and other factors influencing 
implantation and resection strategies, (ii) within each Institution across 
localization target definitions, as a result of a non-standardized 
approximation of the potential EZ region (Jehi 2018), (iii) within each 
Institution over time, reflecting how implantation strategies may evolve, 
and lastly (iv) across different Institutions, where variations may arise 
from distinct patient demographics, implantation protocols, or meth
odology for target definition.

Subsequently, to comprehensively investigate the effect of the 
inherent class imbalance on model results, we analyzed how changes in 
class distributions affect commonly used evaluation metrics, namely 
accuracy, Area Under the Receiver Operating Characteristic (AUROC), 
Area Under the Precision-Recall Curve (AUPRC), and F1-score. This 
analysis is performed on both outputs of a simulated binary classifier, as 

well as real outputs of logistic regression models trained on clinical data, 
serving as example models for EZ localization. In the analysis of clinical 
data, we highlight the main limitations and advantages associated with 
accuracy, AUROC, AUPRC, and F1-score through an examination of four 
patient cases, and we show group analysis results across Institutions and 
localization targets with different levels of class imbalance.

Based on our findings, we propose a combination of evaluation 
metrics that comprehensively assess binary classification models for EZ 
localization. By establishing a more robust and comprehensive evalua
tion framework, our study aims to standardize the model evaluation 
process. This standardization aims to ultimately enhance the overall 
classification performance and reliability of machine learning models in 
the critical task of automatic EZ localization for patients with drug- 
resistant epilepsy.

2. Methods

To promote transparency and reproducibility of the methodology, 
the codes for analysis of simulated and clinical data are available online 
(https://gitlab.com/bbeer_group/public_codes/metrics-for-evaluation- 
of-automatic-epileptogenic-zone-localization).

2.1. Patients

The patient cohort for the analysis of class imbalance consisted of all 
consecutive adult patients with drug-resistant focal epilepsy who un
derwent SEEG and subsequent resective surgery at SAUH between 2012 
and 2022 and the MNI between 2009 and 2019. Patients without in
formation on the seizure-onset zone (SOZ) or the resected contacts were 
not considered for the study, resulting in a patient cohort of 139 patients 
(59 from SAUH and 80 from the MNI). The study was approved by the 
Brno Epilepsy Center – SAUH Research Ethics Committee and MNI 
Ethics Review Board. All patients granted written informed consent in 
accordance with the Declaration of Helsinki.

2.2. Localization target definition

In EZ localization studies, class imbalance refers to the ratio of the 
target SEEG contacts, defined based on the approximation of the EZ, and 
the non-target SEEG contacts outside the region of interest. In our study, 
the localization target was identified according to the most common 
approximations of the EZ as

(i) SOZ contacts (marked by visual inspection of SEEG by board- 
certified epileptologists based on the earliest detectable changes at 
seizure onset irrespective of the fast activity content (Spanedda, Cendes, 
Gotman 1997)) (Saboo et al. 2021; Thomas et al. 2023; Conrad et al. 
2023),

(ii) resected contacts (all contacts removed during surgery identi
fied based on pre and postsurgical MRI) (Karunakaran et al. 2018; 
Zweiphenning et al. 2022; Shahabi, Nair, Leahy 2023), and

(iii) resected SOZ contacts (SOZ contacts removed during surgery) 
(Klimes et al. 2019; Bernabei et al. 2022).

2.3. Class imbalance analysis

To analyze the level of class imbalance in the data, we defined the 
term “relative target size” as the percentage of target SEEG contacts from 
the total number of all SEEG contacts used for analysis (all SEEG con
tacts with a confirmed location inside the brain). We investigated the 
distributions of relative target size values (i) within each Institution 
across individual patients, (ii) within each Institution across the three 
localization target definitions, (iii) within each Institution over time, 
and (iv) across the two Institutions. The parts of the class imbalance 
analysis are illustrated in Fig. 1, and the methodology is described in 
detail in the Supplementary Material.
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2.4. Metrics for evaluation of epileptogenic zone localization

2.4.1. Metric selection
In the evaluation of models for localizing the EZ in intracranial 

electrophysiology studies, the following metrics are commonly used: 

• Sensitivity, also known as “true positive rate” or “recall” (von 
Ellenrieder et al. 2016; Sumsky and Santaniello (2019); Cimbalnik 
et al. 2018)

• Specificity, also known as “true negative rate” or “selectivity” 
(Klimes et al. 2019; Lai et al. 2020; Lundstrom, Brinkmann, Worrell 
2021)

• Positive Predictive Value (PPV), also known as “precision” 
(Elahian et al. 2017; Gunnarsdottir et al. 2022; Jiang et al. 2022)

• Negative Predictive Value (NPV) (Lundstrom, Brinkmann, Worrell 
2021; Mooij et al. 2016; Wang et al. 2022)

• Accuracy (Gunnarsdottir et al. 2022; Gireesh et al. 2023; Jose et al. 
2023)

• AUROC (Akter et al. 2020; Conrad et al. 2022; Wang et al. 2023)
• AUPRC (Chybowski et al. 2024; Bernabei et al. 2022)
• F1-score, also known as “F1-measure” (Gireesh et al. 2023; Modur 

and Miocinovic 2015; Varotto et al. 2021)

Their definitions are provided in the Supplementary Material. While 
each of the simple metrics (specificity, sensitivity, PPV, and NPV) plays a 
crucial role in model evaluation, individually they offer only a limited 
perspective on the model performance (Branco, Torgo, Ribeiro 2015). 
Given these limitations, our analysis centered primarily on metrics that 
evaluate the trade-off between the simple metrics, providing a more 
comprehensive evaluation. Specifically, we focused on accuracy, 
AUROC, AUPRC, and F1-score. Accuracy, despite being proven to be 
unsuitable for imbalanced data (Provost, Fawcett, Kohavi 1998 Branco, 
Torgo, Ribeiro 2015), is still one of the most frequently used metrics. 
AUROC is the most widely adopted metric in imbalanced SEEG studies, 
despite limitations caused by equal evaluation of both classes (Davis and 

Goadrich 2006; Webb and Ting 2005). On the other hand, AUPRC and 
F1-score are metrics that have been widely recommended for dealing 
with imbalanced data within the machine learning community (Davis 
and Goadrich 2006), yet these metrics are not commonly used in EZ 
localization studies, suggesting a gap between general machine learning 
practices and this specific field.

In our study, we highlighted the importance of accuracy, AUROC, 
AUPRC, and F1-score in offering a comprehensive view of model per
formance and their limitations in dealing with imbalanced data, which is 
a common occurrence in clinical datasets. While acknowledging their 
limitations, we have chosen them for their relevance and use in epilepsy 
diagnostics.

2.4.2. Metric chance levels
Comparing a model’s performance to chance levels is crucial as it 

serves as a benchmark for assessing whether the model genuinely learns 
from data or merely guesses. The definition of chance level performance 
varies depending on the metric.

The chance level for accuracy, defined by the always negative clas
sifier, depends on the class distribution. In a binary classification task, a 
random classifier predicting all samples as non-target achieves accuracy 
corresponding to the proportion of negative samples in the dataset.

The chance level for AUROC is 0.5 because it represents a scenario 
where the true positive rate equals the false positive rate at all thresh
olds, producing a diagonal line across the ROC space that covers half the 
unit square (Fawcett 2006).

For the precision-recall metrics, the chance level is usually defined 
by the always positive classifier, and it also depends on class distribu
tion. Specifically, for AUPRC, the chance classifier’s performance is 
equivalent to the precision (p) achieved when classifying all samples as 
positive. This precision is directly tied to the proportion of positive 
samples in the dataset, representing the relative target size. When 
calculating the chance level for the F1-score, recall is set to 1, indicating 
perfect recall, and the precision is set to the chance level precision (p). 
The chance level F1-score is then calculated using the F1-score formula 

Fig. 1. Class imbalance in clinical datasets was analyzed in four different ways. (I.) Variability among patients: the brain diagrams show SEEG implantations for 
patients 657 and 1630 and resected contacts in green, demonstrating the differences in the number and distribution of implanted electrode contacts and target 
contacts. (II.) Variability across localization target definitions: the brain diagrams show the SOZ (blue), Resected (orange), and SOZ&Resected (green) contacts for 
patient 71, showing how target definitions can vary in size. (III.) Changes over time: the plots illustrate how changes in relative target size at SAUH and the MNI were 
analyzed over time (approximately 10 years). (IV.) Variability across Institutions: the panel shows how the class imbalance at SAUH and the MNI were compared for 
different target definitions.
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as (2× p)/(p + 1).

2.5. Metric analysis using simulated data

The Monte Carlo simulation was used to analyze how various eval
uation metrics depend on the level of class imbalance of data in a binary 
classification task, such as the classification of EZ vs. non-EZ contacts for 
EZ localization. Here, the class imbalance is given by the relative size of 
the localization target, which is defined based on one approximation of 
the EZ, for example, as either the “SOZ”, the “Resected, or the 
“SOZ&Resected” contacts as defined in Section 2.2. The Monte Carlo 
method was used to approximate the results of a binary classification 
model under a specified level of class imbalance and fixed classification 
performance. By performing the simulation for a range of class imbal
ance levels and classifier parameters, we analyzed how the classification 
results change depending on those variables. The simulation process is 
illustrated in Fig. 2 and described in detail in the Supplementary 
Material.

2.6. Metric analysis using clinical data

To analyze metric properties on clinical data, three logistic regres
sion EZ localization models were trained and evaluated, each corre
sponding to a specific target definition (“SOZ”, “Resected”, and 
“SOZ&Resected”). The models were used to classify electrode contacts 
as either target (pathologic) or non-target (normal) based on the rate of 
interictal epileptiform discharges (IEDs) detected in the SEEG signals. 

The patient selection process for the localization cohort, data pre
processing, and the logistic regression models are described in detail in 
the Supplementary Material.

Trained models were evaluated separately for each patient by met
rics described in the Methods section. For group analysis, the results 
across patient groups were compared using the Hanley-McNeil and 
randomization tests, which are suitable for the comparison of results 
across groups with different levels of class imbalance.

To confirm the superiority of higher metric scores over lower scores 
across all statistical tests, we used a one-tailed approach designed spe
cifically to assess whether the higher score was statistically greater than 
the lower score. A Hanley-McNeil test (Hanley and McNeil 1982) was 
used to compare AUROC values derived from independent ROC curves 
(α = 0.05, one-tailed). Bonferroni correction was applied to maintain an 
overall significance level of α = 0.05 across multiple comparisons, 
yielding a corrected significance level of 0.017.

To assess the statistical significance of differences in accuracy, 
AUPRC, and F1-score values, we employed a randomization test 
(Smucker, Allan, Carterette 2007) with Bonferroni correction (α = 0.05, 
one-tailed). The test involves shuffling ground truth labels and recom
puting metric values in numerous permutations. By comparing the 
observed differences in metric values between Model A and Model B 
with the distribution of differences from shuffled permutations, we ob
tained a p-value for each of the metrics. We performed 1000 permuta
tions, ensuring both statistical robustness and computational efficiency.

Fig. 2. A. Classification results were simulated using the Monte Carlo method: 1) In a single iteration of the Monte Carlo simulation, a vector of predicted labels ŷ 
was generated based on the vector of ground truth labels y and the model’s classification accuracy (TPR, TNR). Samples in the y and ŷ vectors represent SEEG 
contacts, each with a ground truth label yi (1 for target and 0 for non-target) and a label predicted by the classification model ŷi (1 for target and 0 for non-target). 
Size of both vectors was 100 samples. 2) The simulation was repeated 1100 times to generate 1100 samples of the predicted label vector ŷ. 3) Classification results 
were evaluated for each iteration, illustrated by multiple dashed lines, and averaged to obtain the most probable performance of the classifier under given conditions. 
B. In an inner loop, the Monte Carlo simulation (block A) was performed 100 times, each time for a ground truth label vector y with a different relative target size 
(RTS) (1 to 100%). C. In an outer loop, the inner loop (block B) was repeated for 5 classifiers, illustrated by multiple dashed lines, with classification performance 
defined by true positive rate (TPR) and true negative rate (TNR).
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3. Results

3.1. Patients

A cohort of 139 patients, with 59 patients from SAUH and 80 patients 
from the MNI, was included in the analysis of class imbalance. For 
additional patient information, please refer to the Supplementary Pa
tient Table.

3.2. Class imbalance analysis

Across both Institutions and all localization target definitions, the 
localization target constituted a median (interquartile range, IQR) of 
8.89 % (14.24 %) of all electrode contacts per patient, with 50 % of 
values between 3.88 % and 18.12 % of relative target size. The range of 
relative target size values between 4 and 18 % will further be used as a 
range of interest in Monte Carlo simulation results. The distribution of 
relative target size values across patients, localization targets, and 

Institutions, along with statistical test results, is visualized in Fig. 3.
In the SAUH dataset, 1.12 % to 13.46 % of contacts were marked as 

SOZ by clinicians, 0.54 % to 36.47 % of contacts were resected during 
surgery, and 0 % to 12.94 % were resected SOZ contacts. In the MNI 
dataset, between 2.22 % to as much as 85.92 % of contacts were marked 
as SOZ, 2.42 % to 66.71 % of contacts were resected during surgery, and 
0 % to 42.25 % were resected SOZ contacts. None of the analyzed data 
distributions were normally distributed. Basic statistics and the 
normality test results for all distributions are summarized in Supple
mentary Table S1.

The class imbalance between the target definitions was significantly 
different for both Institutions, with p-values below 0.0001 (Kruskal- 
Wallis test). In the SAUH dataset, post hoc testing revealed significant 
variations in class imbalance for all targets. In the MNI dataset, while the 
“SOZ&Resected” target showed significant differences from the other 
targets, the variations in class imbalance between “SOZ” and “Resected” 
were not significant. The complete results of the analysis are shown in 
Supplementary Table S2.

Fig. 3. Distribution of relative target size among patients shows significant differences across localization target definitions and Institutions. For each distribution, 
the box represents the interquartile range with the bold horizontal line inside the box corresponding to the median. Whiskers extend from the box to the minimum 
and maximum values within a range specified by 1.5 times the interquartile range. The violin represents the density of data points corresponding to individual 
patients. The results of the Mann–Whitney rank-sum test are visualized in black and results of post hoc testing with the Dunn’s test for target pairs for SAUH and the 
MNI are visualized in blue and orange. P-value annotation legend: ns: 0.05 < p <= 1.00, *: 0.01 < p <= 0.05, **: 0.001 < p <= 0.01, ***: 0.0001 < p = 0.001, ****: 
p <= 0.0001.
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The temporal variations in class imbalance were examined by 
analyzing the relationship between the relative target size and the date 
of SEEG implantation (used as a proxy for time). For the SAUH dataset, 
the percentage of resected contacts per patient decreased significantly 
between 2012 and 2022 (Spearman’s correlation coefficient (SCC) =
-0.42, p-value = 0.002). In contrast, the percentage of SOZ and resected 
SOZ contacts showed no significant change. For the MNI patients, the 
analysis revealed no significant correlations, suggesting that the relative 
size of none of the localization targets has changed over time. The de
pendency plots and analysis results are depicted in Fig. 4.

The explanation of the changes in relative target size occurring over 
time may lie in the significant increase in the total number of implanted 
electrode contacts per patient, which was found at both Institutions 
(SCC of 0.63 at SAUH and 0.43 at the MNI), as visualized in Supple
mentary Figure 1.

For all localization target definitions, the class imbalance between 
the two Institutions was different, with a significantly larger class 
imbalance at the MNI as compared to SAUH patients (p < 0.001), as 
shown in Fig. 3. The effect size was large for all comparisons with Cliff’s 
delta of 0.84, 0.56, and 0.70 for the “SOZ”, “Resected” and 
“SOZ&Resected” targets, respectively, showing the largest difference in 
the relative counts of contacts determined to be in the SOZ by clinicians 
across the Institutions. The SOZ contacts constituted a median (inter
quartile range, IQR) of 3.75 % (3.43 %) of all contacts implanted per 
patient at SAUH and, in contrast, 15.38 % (12.51 %) at the MNI. Simi
larly, the median (IQR) percentage of contacts resected during surgery 
was 9.26 % (11.71 %) at SAUH compared to 17.49 % (16.16 %) at the 
MNI and median of 2.76 % (2.24 %) of contacts were SOZ contacts 
resected during surgery at SAUH and 6.85 % (6.08 %) at the MNI. 
Subsequent analysis of the differences in absolute target size (number of 
target electrode contacts) across Institutions with the Mann-Whitney 
test also showed significant differences for all target definitions. The 
complete results are provided in Supplementary Table S3 and S4.

3.3. Metric analysis using simulated data

3.3.1. Monte Carlo simulation
During the Monte Carlo simulation, we fixed the model’s classifica

tion accuracy for both the positive and negative classes (TPR, TNR) and 
varied the relative target size of input data between 1 % and 100 %. This 
simulation aimed to observe the effect of class imbalance on the eval
uation metrics. The outcomes of this simulation are depicted in Fig. 5. 
Notably, a critical range between 4 % and 18 % relative target size is 
emphasized to reflect the range observed in clinical datasets.

The sensitivity (TPR) and specificity (TNR) plots depict the 
consistent behavior of simulated models in classifying positive and 
negative samples. In contrast, the PPV and NPV metrics showed a 
distinct dependency on class distribution. As the relative target size 
increased, PPV rose while NPV declined, despite the model’s consistent 
performance, illustrating their lack of robustness to class imbalance 
variations.

The accuracy plot demonstrates the assignment of equal weight to 
both classes and why this metric is unacceptable in imbalanced domains. 
For small relative target sizes, the accuracy metric is predominantly 
influenced by the accuracy in classifying the non-target samples 
(quantified by TNR), resulting in values around 0.9 for all models in our 
simulation. Consequently, a specific accuracy value, such as 0.85, may 
be achieved by multiple classifier models. This property makes it 
impossible to distinguish the superior classifier based on accuracy value 
without the knowledge of the level of class imbalance.

The AUROC metric stands out among the analyzed metrics as it 
demonstrated independence on relative target size. Its consistency 
despite changes in relative target size makes AUROC a reliable measure 
for discriminating superior classifiers in terms of their overall perfor
mance. Nevertheless, the AUROC metric assigns equal weight to both 
classes, which can lead to an overly optimistic evaluation in datasets 
with a majority of non-target samples. This issue is demonstrated in an 

Fig. 4. The percentage of resected contacts at SAUH decreased over time. Plots of the dependency of relative target size on time for SAUH (A) and the MNI (B) 
datasets are visualized with the date of SEEG implantation used as a proxy for time. The Spearman’s correlation coefficient (SCC) between relative target size and 
time as well as the p-value is reported for localization targets: “SOZ”, “Resected”, and “SOZ&Resected”. Second-order polynomial regression was fitted to the data and 
visualized along with the 95% confidence interval.
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additional simulation in Supplementary Figure 2.
In contrast, the AUPRC metric exhibited a direct dependency on 

class imbalance levels, displaying variations in its values in response to 
changes in the relative target size. High metric values were observed in 
scenarios with higher relative target size values, signifying less imbal
anced data. Conversely, lower AUPRC values were observed in instances 
of greater class imbalance. Consequently, relying solely on AUPRC 
proves insufficient for effectively distinguishing between strong and 
weak classifiers, as the class distribution heavily influences its outcomes 
in the dataset. To illustrate, a classification result of AUPRC = 0.3 could 
be produced by either of three classifiers, contingent on the specific class 
imbalance level.

The F1-score exhibited similar properties to the AUPRC, particularly 
when non-target samples dominated the dataset. Similar to AUPRC, the 
F1-score showed a dependency on the relative target size and favored 
less imbalanced data. Consequently, the F1-score faced similar chal
lenges as AUPRC when distinguishing between classifiers based solely 
on the metric values. This was particularly evident in the lower ranges of 
relative target size values prevalent in EZ localization datasets.

As such, reporting these metrics in the context of imbalanced data
sets requires careful consideration of the class distribution to avoid 
potentially biased conclusions about model performance.

3.4. Metric analysis using clinical data

The patient cohort was further refined according to the criteria 
described in the Supplementary Methods section, resulting in a locali
zation patient cohort of 25 patients, with 8 gathered from SAUH and 17 
from the MNI. Logistic regression models, each trained and tested on a 
specific localization target (“SOZ”, “Resected”, and “SOZ&Resected”), 
were evaluated for each patient through a leave-one-patient-out cross- 
validation approach for the localization of their respective targets. A 
median (IQR) of 9.2 % (13.3 %) of all contacts per patient was identified 

as the SOZ. In contrast, a median of 10.7 % (18.4 %) of contacts per 
patient was resected during the surgical intervention, while a median of 
5.7 % (6.0 %) constituted SOZ contacts within the resected zone.

To analyze the evaluation metrics, we present four clinical cases 
from the localization cohort, highlighting specific limitations and ad
vantages associated with selected metrics. Then, we show two examples 
of group analysis of results (across Institutions and across localization 
targets), including suitable statistical testing for datasets with different 
levels of class imbalance, and interpretation of the results.

3.4.1. Accuracy: Unmasking suboptimal performance
Solely relying on accuracy as an evaluation metric can be misleading, 

as exemplified by the case of patient number 89. Despite a high accuracy 
score of 0.953, a closer examination of the confusion matrix in Fig. 6
reveals the model as a no-skill classifier, misclassifying all electrodes as 
normal. The model achieved an F1-score of zero, with AUROC and 
AUPRC values only marginally exceeding chance levels, thus exposing 
the shortcomings of accuracy in reflecting true model performance 
within imbalanced datasets.

3.4.2. AUROC: An incomplete picture
The inadequacy of AUROC in addressing imbalanced data is high

lighted by the case of patient 77, presented in Fig. 7. Despite a seemingly 
high AUROC of 0.970 for localizing “SOZ&Resected” contacts, a detailed 
analysis of AUPRC shows a less optimistic perspective. The AUPRC, 
which represents the model’s average precision, indicates the overall 
ability of the model to localize the target with an average precision of 
0.236 across all possible classification targets, although for the threshold 
chosen by the model, the F1-score was zero. This suggests that the 
model’s predictions, while achieving a high AUROC, have limited clin
ical relevance as a substantial portion of the predicted positive instances 
does not correspond to actual positive cases. Additionally, the model 
yielded an F1-score of zero since no target contacts were correctly 

Fig. 5. PPV, NPV, accuracy, AUROC, and F1-score are sensitive to changes in relative target size. The dependency of sensitivity (also “true positive rate” or “recall”), 
specificity (also “true negative rate”), PPV (also “precision”), NPV, accuracy, AUROC, AUPRC, and F1-score on relative target size is visualized for 5 classification 
models (CL1-5). Models are defined by true positive rate (TPR) and true negative rate (TNR). The range between 4 and 18% relative target size, found in clinical data, 
is highlighted.
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Fig. 6. Classification results for patient 89 and “SOZ&Resected” model, including the confusion matrix (A), model results with corresponding chance levels (B), and 
visualization of SEEG contacts projected on a standard MNI brain model with ground truth (C) and predicted labels (D). Contacts with black edges have a positive 
label, while contacts with gray edges have negative labels. The color gradient symbolizes the scores assigned to each contact by the classifier normalized to a range 
between 0 and 1.

Fig. 7. Classification results for patient 77 and “SOZ&Resected” model, including the confusion matrix (A), model results with corresponding chance levels (B), and 
visualization of SEEG contacts projected on a standard MNI brain model with ground truth (C) and predicted labels (D). Contacts with black edges have a positive 
label, while contacts with gray edges have negative labels. The color gradient symbolizes the scores assigned to each contact by the classifier normalized to a range 
between 0 and 1.
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identified with the proposed threshold. This case underscores the risk of 
overly optimistic conclusions based on high AUROC values, especially in 
EZ localization where the underrepresented positive class holds primary 
importance.

3.4.3. AUPRC: Addressing class imbalance
The limitations of AUPRC are exemplified in the case of patient 1153 

and “SOZ” localization, illustrated in Fig. 8. Despite achieving a high 
AUPRC of 0.817, the high proportion (51.5 %) of target SOZ contacts 
calls the metric’s validity into question. Even a naive strategy of labeling 
all contacts as positive would yield an AUPRC of 0.515, raising concerns 
about the clinical relevance of the model’s performance. The inherent 
imbalance leads to an inflated AUPRC, emphasizing the need for a 
nuanced interpretation and consideration of alternative metrics, such as 
AUROC. In this case, AUROC showed an average performance of 0.786, 
aligning with the model’s suboptimal accuracy of 0.495 (slightly above 
chance) and an F1-score of 0.038. These findings underscore the model’s 
limitations, which could not be captured by the AUPRC, and emphasize 
the need for a comprehensive evaluation strategy that goes beyond in
dividual metrics.

3.4.4. F1-score: Balancing precision and recall
The significance of the F1-score is underscored in the case of patient 

965 and the “SOZ&Resected” model, shown in Fig. 9. Despite the 
model’s success in assigning higher scores to target contacts, reflected in 
excellent AUROC and AUPRC values of 0.996 and 0.917, it struggled to 
identify an optimal classification threshold to distinguish between target 
and non-target contacts. The F1-score of 0.5 indicates a suboptimal 
trade-off between precision and recall, offering valuable insights into 
the model’s performance and its clinical relevance..

3.5. Group analysis – Across Institutions

To perform a group analysis across Institutions, patient results were 
aggregated separately for each Institution and evaluated by comparing 
results between two Institutions, SAUH and the MNI, across four eval
uation metrics: accuracy, AUROC, AUPRC, and F1-score. This evaluation 
example simulates the real-life scenario of cross-institutional testing, 
which is essential for model validation. The results for model “SOZ”, 
depicted in Fig. 10, reveal important insights into the model’s effec
tiveness at each Institution. Results for “Resected” and “SOZ&Resected” 
models are visualized in Supplementary Figure S3.

Firstly, the accuracy metric with median values of 0.953 for SAUH 
and 0.873 for the MNI shows no statistically significant difference be
tween the two Institutions (p = 0.996). This suggests that the “SOZ” 
model performs similarly in terms of accuracy at both Institutions 
despite the difference in metric values.

In terms of AUROC, the median values were 0.791 for SAUH and 
0.895 for the MNI. With a p-value of 0.379, this difference was also not 
statistically significant, suggesting that the ability of the “SOZ” model to 
distinguish between classes is comparable at both Institutions.

A notable difference was observed in the AUPRC metric, where 
SAUH had a median value of 0.277, significantly lower than the 0.817 
observed for the MNI (p < 0.001). This implies that the MNI’s model 
performance in terms of precision-recall trade-off is markedly better 
than that of SAUH.

Lastly, the F1-score showed median values of 0.292 for SAUH and a 
significantly better score of 0.400 for the MNI (p = 0.015). This indicates 
that the MNI achieves a better harmonic mean of precision and recall 
compared to SAUH.

In summary, while the model showed higher accuracy scores for 
SAUH, a more comprehensive analysis of model performance revealed a 
significant superiority of AUPRC and F1-score performance for the MNI. 
These findings suggest that while the model’s ability to correctly classify 

Fig. 8. Classification results for patient 1153 and “SOZ” model, including the confusion matrix (A), model results with corresponding chance levels (B), and 
visualization of SEEG contacts projected on a standard MNI brain model with ground truth (C) and predicted labels (D). Contacts with black edges have a positive 
label, while contacts with gray edges have negative labels. The color gradient symbolizes the scores assigned to each contact by the classifier normalized to a range 
between 0 and 1.
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instances is similar at both Institutions, the MNI benefits from better 
precision-recall characteristics considering the class imbalance in 
respective datasets.

3.6. Group analysis – Across localization targets

For group analysis across localization targets, patient results were 
aggregated across all 25 patients in the localization cohort and evalu
ated by comparing results of the three models, (“SOZ”, “Resected”, and 
“SOZ&Resected”), across four evaluation metrics: accuracy, AUROC, 

AUPRC, and F1-score. A summary of the results is presented in Fig. 11
with complete results in Supplementary Table S6.

The model trained for localizing “SOZ&Resected” contacts demon
strated the highest accuracy (0.953), outperforming “SOZ” (0.907) and 
“Resected” (0.893) models in the localization of their respective targets. 
However, the differences in accuracy values lacked statistical signifi
cance when tested with the randomization test. In terms of AUROC, 
“SOZ&Resected” (0.895) outperformed both the “SOZ” (0.870) and 
“Resected” (0.787) models with statistical significance (p-values of 
0.006 and < 0.001) measured by the Hanley-McNeil test. The model 

Fig. 9. Classification results for patient 965 and “SOZ&Resected” model, including the confusion matrix (A), model results with corresponding chance levels (B), and 
visualization of SEEG contacts projected on a standard MNI brain model with ground truth (C) and predicted labels (D). Contacts with black edges have a positive 
label, while contacts with gray edges have negative labels. The color gradient symbolizes the scores assigned to each contact by the classifier normalized to a range 
between 0 and 1.

Fig. 10. Group analysis of the “SOZ” model’s predictions reveals significantly better performance for the MNI. The distributions of classification metrics across 
patients from SAUH (N = 8) and the MNI (N = 17) are visualized, with a horizontal line as the median. Results of statistical testing (randomization test for accuracy, 
AUPRC and F1-score, and Hanley-McNeil test for AUROC) are reported with significant results in bold.
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aimed at localizing “SOZ” contacts, with an AUPRC of 0.655, signifi
cantly outperformed the remaining models (p-value < 0.001) in a 
randomization test. The “Resected” contacts localization model followed 
with an AUPRC of 0.567 and the “SOZ&Resected” model with an AUPRC 
of 0.507 without a significant difference between the two results. The 
“SOZ” model achieved the best F1-score of 0.333, followed again by the 
“Resected” model with a score of 0.286 without a significant difference 
and the “SOZ&Resected” model with a score of 0.

Based on the results, we may conclude that the “SOZ&Resected” 
model has outperformed the remaining models in terms of their overall 
ability to assign higher scores to target contacts and lower scores to non- 
target contacts. However, in our dataset, the median relative size of the 
“SOZ&Resected” target (5.7 %) was significantly smaller than both the 
“SOZ” target (9.2 %) and the “Resected” target (10.7 %). The non-target 
contacts, which constitute 94.3 % of all contacts for the “SOZ&Resected” 
target, are easier to classify since they provide more training samples for 
the machine learning model. Consequently, the AUROC result may be 
driven by an excellent performance of the “SOZ&Resected” model in 
classifying the non-target contacts, potentially resulting in an overly 
optimistic assessment of the localization model’s performance. In terms 
of performance focused on the target contacts, the “SOZ” model has 
shown the best results as it outperformed the remaining models in 
AUPRC with statistical significance. To interpret the achieved AUPRC 
value, on average over all possible classification thresholds, a median of 
65.5 % of the contacts marked as SOZ by the “SOZ” model were actual 
SOZ contacts per patient.

Supplementary Figure S4 visualizes the ROC and PR curves to 
illustrate model performance over the range of classification thresholds.

4. Discussion

This study has systematically addressed the pivotal challenges in 
evaluating EZ localization models, presenting an in-depth analysis of 

commonly used evaluation metrics within this domain. Previous 
research, such as the work by Bernabei et al. (Bernabei et al. 2023) has 
highlighted several pitfalls in automatic EZ localization, including the 
significant variability in data related to implant types, therapeutic ap
proaches, underlying pathologies, and outcome metrics. Furthermore, 
contributions from studies by Zhao et al. (Zhao et al. 2022) and Varotto 
et al. (Varotto et al. 2021) have advanced our understanding in areas of 
data augmentation and classification model design to mitigate some of 
these challenges. Despite these advancements, our study represents the 
first investigation into evaluating EZ localization models in intracranial 
electrophysiology, with a particular focus on the implications of class 
imbalance.

Our main findings underscore that relying solely on any single of the 
analyzed metrics provides an incomplete perspective on model perfor
mance, particularly when not accounting for class imbalance inherent in 
clinical datasets. Simple metrics like specificity, recall, precision, and 
negative predictive value, while straightforward, fail to assess model 
performance comprehensively. Similarly, widely used metrics such as 
accuracy, AUROC, AUPRC, and F1-score each fail to adequately address 
at least one of the unique challenges EZ localization poses. A combina
tion of AUROC and AUPRC is therefore advised for robust evaluation.

4.1. Impact of class imbalance on model evaluation

The analysis of class imbalance in the clinical datasets clearly dem
onstrates the issue we face in the field of automatic EZ localization. Due 
to the different class distributions in the datasets, it is important to 
conduct appropriate statistical testing and acknowledge the impact of 
class imbalance on each metric when interpreting the results.

Patient-level evaluations, especially for datasets where the propor
tion of target to non-target contacts ranges widely (e.g., 3 % to 86 % SOZ 
contacts in the MNI dataset), must be approached with caution. The 
chance levels of precision-recall metrics, such as PPV, AUPRC, or F1- 

Fig. 11. On the left, the relative target size (RTS) for “SOZ” (blue), “Resected” (orange), and “SOZ&Resected” (green) targets are visualized. On the right, the 
distributions of classification metrics across cross-validation folds for the “SOZ”, “Resected”, and “SOZ&Resected” classification models are visualized, with a 
horizontal line as the median and the median values reported for each boxplot. Results of statistical testing (randomization test for accuracy, AUPRC and F1-score, 
and Hanley-McNeil test for AUROC) are reported with p-value annotation legend: ns: 0.017 < p <= 1.00, *: 0.01 < p <= 0.017, **: 0.001 < p <= 0.01, ***: 0.0001 
< p = 0.001, ****: p <= 0.0001.
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score, span over a broad range of values, depending on the range of class 
imbalance in the data, emphasizing the importance of understanding 
class distributions for objective metric interpretation.

Moreover, the method of approximation of the EZ significantly im
pacts class distribution, as demonstrated in both Institutions. When 
comparing results for models trained on identical patients but under 
different target definitions, the differences in class distributions among 
the targets result in differences in metric chance levels. Given these 
circumstances, conventional paired tests become unsuitable, and alter
native statistical methods must be considered. In our study, we propose 
the Hanley-McNeil test for the comparison of two independent AUROC 
values and the randomization test for the comparison of independent 
accuracy, AUPRC, and F1-score values.

Throughout our analysis, we also observed variations in the relative 
size of targets over time within one Institution. Notably, at SAUH, there 
was a significant decrease in the relative number of resected contacts 
from 2012 to 2022, attributed to a simultaneous increase in the total 
number of implanted contacts at the Institution. In contrast, we did not 
detect significant changes in relative target sizes at the MNI, although 
there was a noteworthy increase in the overall number of implanted 
contacts. This underscores the importance of exercising caution when 
splitting data into training and testing datasets in retrospective studies 
to avoid accentuating differences in class imbalance through the split.

Cross-institutional validation is crucial for assessing model general
ization abilities (Jehi 2023). Our analysis revealed notable differences in 
class imbalance within clinical datasets from SAUH and the MNI across 
all target definitions. This underscores the importance of considering 
class distribution when interpreting the results of cross-institutional 
testing and the necessity to employ suitable statistical tests, such as 
the Hanley-McNeil and randomization tests, as demonstrated in the 
group analysis.

4.2. Critical analysis of common evaluation metrics

To summarize the main findings from the metric analysis, none of the 
commonly used evaluation metrics meets all the criteria defined for the 
evaluation framework. The criteria were that the evaluation framework 
must (i) comprehensively assess model performance, (ii) emphasize the 
evaluation of the minority class, and (iii) be robust to variations in class 
distribution.

Sensitivity, specificity, PPV, and NPV do not comprehensively eval
uate the model performance since they focus only on a limited aspect of 
model performance. Accuracy weights each class according to its fre
quency in the dataset, leading to misleading conclusions in imbalanced 
datasets. AUROC, by assigning equal weight to both pathologic and 
normal contacts, tends to be influenced by the more prevalent negative 
class samples (i.e., normal contacts), which are of less clinical interest. 
This can potentially result in an overly optimistic evaluation since 
majority-class samples are typically easier to classify correctly compared 
to minority-class samples. As demonstrated in Supplementary Figure S2, 
AUROC cannot capture the difference between accuracy on the minority 
positive class (TPR) and accuracy on the majority negative class (TNR), 
although TPR is undeniably more relevant in EZ localization. In contrast, 
precision-recall metrics, including AUPRC and the F1-score, prioritize 
the minority class, representing pathologic contacts critical for accurate 
diagnosis and treatment in EZ localization. However, these metrics 
inherently favor less imbalanced data and are not robust to changes in 
class distribution.

4.2.1. Alternatives beyond traditional metrics
Alternative metrics that directly address the imbalance problem 

exist, such as balanced accuracy and localized ROC. Balanced accuracy, 
for example, averages the sensitivity and specificity, thus treating both 
classes equally regardless of their size in the dataset and, therefore, 
suffering the same limitation as AUROC. Localized ROC, or variations 
that focus on specific regions of the ROC curve, can provide insights into 

the performance of a model at clinically relevant decision thresholds. By 
focusing on the trade-offs between sensitivity and specificity in a 
balanced manner, these metrics can offer a more detailed view of model 
performance in contexts where certain errors are more costly than 
others. However, clinical datasets are inherently imbalanced, often 
significantly so, and metrics that require balanced conditions for optimal 
evaluation could, therefore, provide a distorted view of how a model 
performs in actual clinical settings.

Due to the sensitivity of AUPRC to class imbalance, several studies 
have proposed modifications to this metric based on its normalization. 
Boyd et al. (Kendrick, 2012) point out the existence of an “unachievable 
region” in the PR space, which limits the possible AUPRC values a model 
can achieve depending on the level of class imbalance in the data. As a 
solution, they propose the Area Under the Normalized PR Curve 
(AUCNPR), which is essentially the value of AUPRC normalized to a 
range of its achievable values. Flach and Kull (Flach and Kull 2015) 
rigorously analyzed the shortcomings of PR metrics and plots and 
defined a new metric, “AUPRC Gain”, as an alternative to AUPRC robust 
to changes in class distribution. Although both of the metrics show po
tential in addressing the sensitivity of AUPRC to class imbalance, neither 
of them proved to be completely robust to variations in relative target 
size in our analysis, as visualized in Supplementary Figure S5.

4.3. Recommendations for robust model evaluation

Based on our findings, we recommend reporting AUROC and AUPRC 
values as primary model results. AUROC, a widely accepted metric, 
assesses the overall model performance, maintaining robustness to class 
imbalance variations. Conversely, AUPRC provides insights into the 
model’s performance on target contacts, emphasizing its clinical utility, 
as the value of AUPRC represents the average precision at different 
thresholds of the model in localizing the EZ. To address AUPRC bias 
towards less imbalanced data, it is essential to report chance levels. 
Together, these metrics comprehensively capture key aspects of model 
performance.

To supplement these metrics, we suggest including the F1-score 
when a specific threshold’s performance is of interest. However, the 
F1-score should not be used as a substitute for AUPRC. Alternatively, the 
generalized Fᵦ-score allows customization based on specific needs, 
emphasizing precision (with a lower beta, e.g., 0.5) or recall (with a 
higher beta, e.g., 2) depending on the application. This adaptability suits 
scenarios like defining the localization target as resected contacts or SOZ 
contacts resected during surgery, respectively, and provides further 
clinical insight.

Additionally, we suggest statistical tests (Hanley-McNeil and 
randomization tests) that enable effective model comparisons, accom
modating different class distributions in training datasets.

5. Conclusions

In conclusion, we propose that the value of AUROC and AUPRC 
should be reported together for a comprehensive assessment of binary 
classification models for epileptogenic zone localization. Alongside 
metric values, it is crucial to report the class distribution and its impact 
on classification results should be discussed to draw valid conclusions 
about model performance. Furthermore, the inclusion of the F1-score is 
recommended when evaluating class assignments of samples. The 
adoption of this evaluation framework will not only enhance the 
comparability of study results but also contribute to the development of 
more reliable machine-learning models for epileptogenic zone locali
zation in intracranial electrophysiology. By systematically addressing 
the challenges of class imbalance and providing a robust analytical 
framework, our study lays a foundation for more accurate and clinically 
relevant evaluations, ensuring better generalization of models across 
diverse clinical datasets.
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