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Abstract

INTRODUCTION: Studies have correlated living close tomajor roadswith Alzheimer’s

disease (AD) risk. However, themechanisms responsible for this link remain unclear.

METHODS: We exposed olfactory mucosa (OM) cells of healthy individuals and AD

patients to diesel emissions (DE). Cytotoxicity of exposure was assessed, mRNA,

miRNA expression, and DNA methylation analyses were performed. The discov-

ered altered pathways were validated using data from the human population-based

Rotterdam Study.

RESULTS: DE exposure resulted in an almost four-fold higher response in AD OM

cells, indicating increased susceptibility to DE effects. Methylation analysis detected

different DNA methylation patterns, revealing new exposure targets. Findings were
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validated by analyzing data from the Rotterdam Study cohort and demonstrated a

key role of nuclear factor erythroid 2–related factor 2 signaling in responses to air

pollutants.

DISCUSSION: This study identifies air pollution exposure biomarkers and pinpoints

key pathways activated by exposure. The data suggest that AD individuals may face

heightened risks due to impaired cellular defenses.

KEYWORDS

air pollution, air–liquid interface (ALI), Alzheimer’s disease (AD), heat shock protein (HSP),
next-generation sequencing (NGS), nuclear factor erythroid 2–related factor 2 (NRF2), traffic
emissions, traffic-related air pollution (TRAP) olfactorymucosa (OM)

Highlights

∙ Healthy and AD olfactory cells respond differently to DE exposure.

∙ AD cells are highly susceptible to DE exposure.

∙ TheNRF2 oxidative stress response is highly activated upon air pollution exposure.

∙ DE-exposed AD cells activate the unfolded protein response pathway.

∙ Key findings are also confirmed in a population-based study.

1 BACKGROUND

According to the World Health Organization, millions of deaths are

attributed to air pollution annually.1 Amounting body of research indi-

cates that air pollution has adverse effects on many organs, including

the brain.2,3 Living in areas with poor air quality is associated with

an increased risk of cognitive decline and neurodegenerative diseases,

including Alzheimer’s disease (AD).4,5 Air pollution exposure is linked

to the occurrence of AD-like pathology and the disease progression

in both people and animal models, as summarized in.6 Recently, air

pollution has been added to the list of the 12 modifiable risk factors

for dementia, which account for approximately 40% of dementia cases

globally.7 Therefore, further understanding of the impact of air pol-

lution exposure can have a significant impact on disease prevention.

However, the fundamental cellular andmolecularmechanisms induced

by exposure, impacts on the brain, and connection to AD remain poorly

understood.

Olfactory mucosa (OM) cells in the upper nasal cavity control olfac-

tion. TheOM is among the first tissues to be exposed to inhaled air, and

as a result, it is subjected to awide range of toxins. Importantly, theOM

has a direct connection to the brain through the olfactory nerve. Con-

sidering that recent evidence shows a decline in human olfaction after

exposure to air pollution8 and olfaction impairment is a typical early

symptomof neurodegenerative diseases likeAD, it is crucial to concen-

trate research efforts on deciphering themolecular and cellular events

linking environmental contaminants and theOM.

Studies on the neurotoxic effects of pollutants have focused in

particular on the nose-to-brain transfer pathway,9 with most of the

olfactory system investigations conducted to date using animal mod-

els. Specifically, exposure to diesel exhaust (DE) particles has been

shown to reduce sniffing and alter the expression of several genes in

mouse nasal tissue.10 However, in comparison to rodent cells, human

cells are known to respond with greater magnitude to certain com-

ponents of traffic-related air pollutants (TRAP).11 To investigate the

impact of TRAP on the human olfactory system,12 we used a highly

translational research model of human primary OM cells obtained

from nasal biopsies, characterized previously.13 This cell model main-

tains certain disease-related features of AD13 and represents several

homeostasis deficiencies observed in the AD brain, highlighting its

translational potential.14 Recently, using a submerged culture mode of

OM cells, we revealed that exposure to TRAP attenuated gene expres-

sion profiles in cells obtained from healthy donors.15 Here, to better

mimic a real-life exposure scenario, we exposed cells to complete DE

at an air–liquid interface (ALI). The exposure system, along with its

advantages over both in vitro and in vivo exposure techniques, was

previously described.16 We hypothesized that ALI exposure to com-

plete DE would induce alterations in the OM cell transcriptome and

methylation level and differentially affect non-demented subjects and

individuals with AD. The specific aims of the study were to (i) identify

keymolecularmechanisms affected byDE exposure inOMcells and (ii)

evaluate how existing AD pathology influences the responses of cells

exposed to complete DE in ALI. Additionally, we assessed data from

the prospective population-based Rotterdam Study aiming to validate

differentially expressed genes (DEGs) and pathways found in the in

vitro experiment.Data fromplasma samples collected from2657 study

participants were classified based on AD diagnosis and additionally

divided into participants living in highly polluted areas and lower pol-

luted areas. Themain tasks performed in theRotterdamStudy aimedat

(i) identifyingbiomarkers thatweredifferential inADcompared to con-

trols, (ii) identifying biomarkers of differential air pollution data, and
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RESEARCH INCONTEXT

1. Systematic review: The study addresses a pressing problem: the interplay of air pollution and AD. Air pollution is a vast global health

concern, with increasing evidence linking it to AD. However, the exact molecular mechanisms involved are yet to be described. A bet-

ter understanding of this link is crucial for the mitigation of adverse health outcomes. Here we present data from both experimental

(patient-derived in vitro) and observational studies (a large population-based cohort) data confirming the link between AD and air

pollution and showcase new mechanistic insight into this connection. We aimed to identify genetic and epigenetic changes in both

healthy and AD individuals exposed to DE. Our approach included an in vitro model of patient-derived OM cells exposed to DE and

subsequent miRNA, mRNA expression, and DNAmethylation analyses. Moreover, we validated the in vitro findings with population-

based data obtained from more than 2000 participants exposed to high- or low-level air pollutants. With this approach, for the first

time,weexpanded thedata and findings obtained in a controlled laboratory experiment todataobtained in a largeobservational study.

Using cutting-edge analysis, we successfully combined data and discovered new pathways and biomarkers valuable for (i) future AD

research, (ii) research on the health effects of air pollutants, and (iii) research on the interplay between AD and air pollution. This

comprehensivemethodology and analysis enhance the understanding of air pollution’s effects on health and AD.

2. Interpretation: The study findings contribute to the understanding of the heightened susceptibility of AD patients to the effects of

air pollution exposure. The findings prove that AD cells exhibit a more pronounced response to DE, with key molecular pathways like

oxidative stress, unfolded protein response, and ER stress being affected. Observed differential responses between AD and control

cells on miRNA, mRNA, and methylome levels highlight the unique vulnerability of AD individuals to environmental stressors. The

study also revealed unique DNA methylation patterns in AD OM cells, as well as differential methylation patterns in control and AD

OM cell response to pollution exposure. These findings pave the way to future research into epigenetic regulation in neurodegener-

ative diseases and environmental biology. Additionally, by correlating in vitro data with population-based data, the study reinforces

the importance of considering environmental factors in AD pathology. Thework provides a great example of validation of in vitro data

in population-based human cohort studies for increasing the translational potential of research and the successful identification of

relevant systemic biological targets.

3. Future directions: Further investigation is warranted to validate and advance the discovery of air pollution exposure effects in both

healthy and at-risk groups. Future studies may prioritize this aspect to enhance our understanding of pollution-related effects on the

OMand the brain.Moreover, although our research has initiated the exploration and validation of defensivemechanisms employed by

cells to counter adverse air pollution effects, more research efforts are needed to fully develop future mitigation technologies, such

as antioxidant supplements or nasal sprays. Interventional studies targeting pathways like NRF2 might offer promising avenues to

mitigate the effects of environmental pollutants in AD.

(iii) linking the data to the results from the in vitro cell exposures. This

approach allowed us to validate our in vitro findings in a human cohort

study and elucidate the main pathways involved in response to TRAP

exposure.

2 METHODS

2.1 Cell culture model

Human OM biopsies were collected from cognitively intact (control)

non-demented individuals and individuals diagnosed with AD (age-

matched, female forty-eight samples in total were collected from eight

donors). For all experiments,weused cells originating from four control

and four AD donors that were divided into three individual replicates

each for both treatment groups, resulting in 12 samples per group in

the analysis. Each of the three individual replicates was exposed sepa-

rately in 1 of the 3 weeks of the study exposure. Later, for the analysis,

samples were combined, resulting in four analysis groups in total: con-

trol clean air, control DE, AD clean air, and AD DE. The OM biopsies

were collected from the nasal septum, approximately 1 cm from the

roof of the nasal cavity. Then primary OM cultures were established

as described previously13 with the ethical approval of the Research

Ethics Committee of the Northern Savo Hospital District (permit num-

ber 536/2017). For ALI cultures, cells were seeded with a density of

150000 cells per insert. Twenty-four-well format Transwell cell cul-

ture inserts (Sigma-Aldrich, USA) were coated with Matrigel Growth

Factor Reduced Basement Membrane Matrix (Corning, USA). Cells

were cultured in a PneumaCult-ALI medium kit with hydrocortisone

stock solution (both STEMCELL Technologies, USA), Heparin Solution

(Parano LEO 5000 IU/mL), and Penicillin-Streptomycin (10,000 U/mL,

Gibco, USA). The cells were grown in submerged conditions until

a homogeneous culture was established (96 h), then medium was

removed from the apical insert, while basal insertmediumwas changed

daily.

After ALI culture was established, cells were grown at 37◦C, 5%

CO2, and relative humidity > 90% in Transwell cell culture inserts

(Sigma-Aldrich, USA). The cells were cultured at the ALI for 4 days

before being subjected to exposure to either clean air or complete

emissions.
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2.2 Exposure characteristics

DE was provided by a typical heavy-duty turbocharged six-cylinder,

6.5-L Iveco Tector diesel engine with common rail injection and

no exhaust after treatment, running on ordinary on-road EN 590-

compliant diesel fuel. The engine was coupled to a transient engine

dynamometer and operated according to the 30-min World Harmo-

nized Transient Cycle (WHTC) on 3 days, with one cold-start WHTC

cycle, followed by one hot-start WHTC cycle, run each day. Complete

DEwas extracted from a full-flow dilution tunnel with an ALI exposure

system described elsewhere17,18 and used previously.17,19. One set of

ALI cultures with OM cells was exposed to diluted DE (average parti-

cle mass concentration of 0.05 mg/m3), and the second set, used as a

reference, was exposed to synthetic air.

In short, ALI cultures with OM cells were exposed daily to either DE

or fresh air for 1 h per day for 3 consecutive days. On the last day of

exposure, cells andmedia were collected for analysis.

2.3 Chemical analysis

Organic extracts/extractable organicmatter gathered on filters at each

exposure were extracted for chemical analysis using dichloromethane

and cyclohexane and examinedbyhigh-performance liquid chromatog-

raphy, as described previously.20 Supplementary Material S1 reports

comprehensive information on the collected particulate matter (PM),

chemical analysis, and polycyclic aromatic hydrocarbon (PAH) concen-

tration. Chemical analysis showed around 3% to 5.5% of carcinogenic

PAHs in the sample. The most abandoned PAHs were phenanthrene,

pyrene, and fluoranthene (SupplementaryMaterial S1).

2.4 Cell assays

The cytotoxic effects of air pollution were evaluated by lactate dehy-

drogenase (LDH) release in cell media using the CyQUANT LDH

Cytotoxicity Assay Kit (Invitrogen, USA) according to the manufac-

turer’s protocol. DNA damage was assessed with the DNA Damage

Competitive ELISA Kit (Invitrogen, USA) that detects 8-hydroxy-

2′-deoxyguanosine release in cell medium. Measurement was done

according to themanufacturer’s protocol. The humanHSP70/HSPA1A

DuoSet ELISA (R&D Systems, USA) was used for measuring heat

shock protein 70 (HSP70) amounts in cell medium according to the

manufacturer’s manual.

2.5 Transcriptome analysis

RNA and DNA were isolated with the AllPrep DNA/RNA/miRNA uni-

versal kit (QIAGEN, USA) according to the manufacturer’s protocol.

We used a Fragment Analyser System and RNA kit (15NT) for assess-

ingRNA integrity numbers according to the producer’smanual (Agilent

Technologies, USA). The concentration of isolated RNA was measured

with the Qubit RNA Hight Sensitivity (HS) Assay kit by the Qubit 4

fluorometer (Thermo Fisher Scientific, USA), and 200 ng of total RNA

was used for mRNA selection with the NEBNext Poly(A) mRNA Mag-

netic Isolation Module (New England Biolabs, USA). mRNA libraries

were prepared with NEBNext Ultra II Directional RNA Library Prep

with Beads and NEBNext Multiplex Oligos for Illumina (all New Eng-

landBiolabs, USA), and100ng of total RNAwas used formiRNA library

preparation with QIAseq miRNA Library Kit and QIAseq miRNA 96

Index IL (both QIAGEN). mRNA and miRNA libraries were assembled

based on the manufacturer’s instructions. The concentration of both

types of libraries was checked with the 1× dsDNA HS kit (Thermo

Fisher Scientific, USA) on the Qubit 4 fluorometer, and their profile

and size were analyzed by the Fragment Analyzer with the HS NGS

Fragment Kit (both Agilent Technologies, USA). mRNA libraries were

pair-end sequenced (2 × 60 cycles) using NovaSeq 6000 S1 Reagent

Kit version 1.5 (100 cycles), and miRNA libraries were single-end

sequenced (85 cycles) using NovaSeq 6000 SP Reagent Kit version 1.5

(100 cycles) (all Illumina, USA).

As sampleswere sequenced into two separate lanes, the FASTQ for-

mat reading resulting from the same sample was concatenated. Reads

were aligned using STAR (version 2.7.9)21 to the GRCh38 human ref-

erence genome, indexed through a GTF annotation file retrieved from

GENCODE (version 41). The quantMode GeneCounts option in STAR

was used to obtain a count table frommapped reads. Quality control of

raw and aligned reads was performed using FASTQC (version 0.11.9).

Downstream statistical analyseswere carried out using theR packages

edgeR (version3.38.2)22 and limma (version3.52.2)23 from theBiocon-

ductor framework. Genes having low expression (count < 15) in more

than 12 samples, the cardinality of each experimental condition, were

filtered out. The normalization coefficients were computed using the

trimmed mean of M-values (TMM) method. Multidimensional scaling

was performed to identify potential sources of variation in the dataset

related to experimental conditions of interest and other conditions

(cell line, replicates, smoking habits, hyposmia). For the within-control

(control DE exposed vs control clean air) and within-AD comparison

(AD DE exposed vs AD clean air) the samples were paired by cell

line and replicated to reduce unwanted variation. In the between-

control and AD contrast (AD clean air vs control clean air), the only

source of external variation consideredwas smoking habits, whichwas

included as a covariate in the model. The voomWithQualityWeights

function with cyclic loess normalization was used to compute gene

weights. A linear model was fitted using lmFit, and standard errors

were smoothed with empirical Bayes. Significant DEGs for each con-

trast were defined as genes with adjusted p value < 0.05 calculated

with the default Benjamini–Hochberg method, and functional analy-

sis was performed on them. Gene Ontology enrichment analysis was

accomplished using the clusterProfiler R package (version 4.4.4).24

Ingenuity Pathway Analysis (IPA)25 was used to identify canonical

pathways and transcription factors significantly altered in each con-

dition. miRNA differential expression workflow was the same as that

of transcriptomic data. miRNA targets were detected with the miR-

NAtap R package (version 0.99.10),26 which collects annotated targets

from the five most commonly cited databases: miRDB,27 DIANA,28,29

TargetScan,30 PicTar,31 and Miranda.32–34 We selected for analysis

miRNA that had been annotated in aminimum of two databases.
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2.6 Whole-genome DNA methylation analysis

First, the combination of genomic DNA (200 ng) and control DNA

was fragmented to an average insert size of 240 to 290 bp on a

Covaris ME220 (duration 95 s, peak power 75 W, duty factor 25%,

cyclesperburst1000, temperature20◦C) (Covaris, LLC,USA). Libraries

were prepared with a NEBNext Enzymatic MethylSeq kit according

to the manufacturer´s instructions (New England Biolabs, USA). DNA

sequencing was performed on an Illumina NovaSeq 6000 with 2 × 160

base read using aNovaSeq 6000 S4Reagent Kit (all Illumina, USA). The

FASTQ paired-end methylation files that resulted from whole-genome

sequencing were processed with an nf-core/methylseq pipeline (ver-

sion 1.6.1). The resulting bsseq files were transformed into tab-

separated text files, with expected input of the methylKit R package.

MethylKit was used to perform differential methylation analysis at the

base level. The methylated bases were mapped with ChIPpeakAnno to

genomic regions as defined by TxDb.Hsapiens.UCSC.hg38.knownGene

to determine their locationwith respect to genes. Additionally, a differ-

ential analysis on predefined regions was performed, namely, of gene

bodies, promoter regions (defined as 1.5 kb upstream and 5 kb down-

stream from transcription start sites), and mature miRNA sequences

(mirbase version 22) to link methylation levels to the relative differen-

tial expression of miRNA andmRNA.

2.7 Validation of identified DEGs in class-specific
pathways from Rotterdam Study

We used Patient Similarity Network analysis to identify class-specific

features of individuals who develop dementia during follow-up and

compared those to features of dementia-free controls. In addition, data

on exposure to air pollution were used to perform a classification task

between participants living in areas with different levels of pollution in

order to determine features that are common to participants living in

highly polluted areas compared to less polluted areas. We sought data

from the ongoing prospective population-based Rotterdam Study that

started in 1990with 7983participants aged55 years andolder (78%of

the invitees).35 At study entry and subsequently every 3 to 4 years, all

participants were invited to undergo extensive examinations. Between

2002 and 2004, corresponding to the fourth examination round (RS-

I-4), plasma samples were collected from 2657 participants (74.8%

of the surviving participants) and included in the analyses of the cur-

rent study. Themajority of participants in our study were of Caucasian

origin, whichmay limit the generalizability of our findings.

2.7.1 Data collection

AD

Participants were screened for dementia at baseline and every 3 to

6 years during follow-up examinations using the Mini-Mental State

Examination (MMSE) and theGeriatricMental Schedule (GMS) organic

level. Those with a MMSE score of <26 or a GMS organic level score

over 0 were further examined using the Cambridge Examination for

MentalDisorders in the Elderly diagnostic interview. Participantswere

also monitored for dementia continuously through an electronic link

between the study database and medical records from general practi-

tioners and the Regional Institute of Outpatients Mental Health Care.

The final diagnosis was established by a consensus panel led by a

neurologist, according to standard criteria for AD (National Institute

of Neurological and Communicative Diseases and Stroke/Alzheimer’s

Disease and Related Disorders Association).

General and clinical characteristics

During home interviews, information was obtained on age, sex,

educational attainment (classified as primary, lower, intermediate,

or higher), and smoking status (classified as current, former, or never).

During these same home interviews, data on the use of blood

pressure-lowering, lipid-lowering, and glucose-lowering medication

were obtained. Waist circumference in centimeters was determined

at the research center. Systolic and diastolic blood pressure (mmHg)

was measured twice on the right arm with the participant in a sit-

ting position using a random zero sphygmomanometer and averaged.

Apolipoprotein E (APOE) genotype was obtained using a polymerase

chain reaction of codedDNA samples.

Air pollution

Exposure to air pollution was calculated at participants’ geocoded res-

idential addresses using land use regression models, as described in

detail elsewhere.36 Modeled air pollutant concentrations included PM

of less than 10 µm (PM10) and 2.5 µm (PM2.5) in diameter, a proxy

of elemental carbon (PM2.5 absorbance), nitrogen oxide (NOx), and

nitrogen dioxide (NO2).

Metabolite profiling

Fasting plasma samples from participants were collected in EDTA-

coated tubes and utilized to quantify metabolites using 1H-NMR

technology. A comprehensive array of metabolites, including amino

acids, glycolysis-relatedmetabolites, ketonebodies, fatty acids, routine

lipids, and lipoprotein subclasses, was simultaneously quantified using

the Nightingale Health metabolomics platform (Helsinki, Finland).

Details on themethod can be found elsewhere.37

Genotype profiling

At the study entry, whole blood samples were collected for the subse-

quent extraction of genomic DNA as described in detail elsewhere.38

Briefly, the salting-out method was employed for this purpose.

Microarray genotyping was performed using the Infinium II Human-

Hap550KGenotyping BeadChip version 3 (Illumina, USA). Genotyping

procedures were followed according to themanufacturer’s protocols.

Data preprocessing

Overall, 231 metabolites were assessed, which were classified into

42 functional groups, as adapted from Nightingale Health’s grouping

of metabolites (https://research.nightingalehealth.com/biomarkers).

Metabolites with more than 20% missing values were removed. Miss-

ing values on other metabolites were imputed to half the minimum for

that metabolite across samples.39
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Genotype data were preprocessed as follows. Plink (version 1.9)40

was used for quality control (–mind 0.01, –geno 0.05, –maf 0.05).

A binary matrix was built where rows corresponded to genes and

columns to samples. We assigned a value of 1 to samples with any

common variant in the gene and a value of 0 to those without. Then

the matrix was filtered to retain only genes that might be relevant

for classification by performing common variant association analysis

with the disease phenotype. Specifically, common variants analysiswas

performed using a model based on region association analysis.41 In

region association analysis, common variants are grouped into sets

based on their genomic location, such that common variants in the

same gene are considered as a single set. Association of common vari-

ant sets in comparison to participants with AD and controls were

performed to identify genes linked to the disease phenotype. Finally,

the binary matrix was split into submatrices, representing pathways

of interest, so as to obtain a binary matrix of the genes belonging to

each pathway. Biological pathways were retrieved from Enrichment

MapGene Sets,42 whichwere compiled frommultiple curated pathway

databases (versionApril 2022), filtered toexcludepathwayshaving less

than 10 or more than 200 genes and composed of at least one gene

with differential common variant coverage, resulting in 656 biological

pathways.

Common variants, despite their modest individual effects, play a

significant role in explaining polygenic diseases like AD. Genome-

wide association studies (GWAS) have identified numerous common

variants associated with AD, underscoring their importance in the dis-

ease pathogenesis.41,43–45 Beingmore prevalent, common variants are

more likely to show significant interactions with environmental influ-

ences. Therefore, by employing data from the RotterdamStudy cohort,

weperformedananalysis of commonvariants to better understand the

interplay between air pollution and AD-related pathways.

For each data feature we obtained after preprocessing (12 clinical

features, 42 metabolite groups, and 656 biological pathways), a simi-

larity matrix was created, indicating a similarity between samples for

each feature, thereby creating 710 patient similarity networks (PSNs).

That is, we used normalized difference for continuous variables (age,

waist diameter, pressure, pulse) and categorical ordinal variables (edu-

cation) after having encoded thevaluesonanumeric scale, andweused

average normalized difference for matrices of continuous variables

(metabolites); for binary variables, similarity was positive on belonging

to the same category (smoking, medications, APOE genotype), and for

a binary variant matrix, similarity was positive for pathways having at

least one common variant in both samples.

Classification

During follow-up, 383 participants developed dementia. The classifica-

tion was conducted on a down-sampled dataset, such that the controls

were randomly chosen in the pool of samples to perform a balanced

analysis (a total of 766 samples of which 383 had AD and 383 were

controls). The training set corresponded to 80% of the down-sampled

dataset, the rest being used as a test set.

PSNs are the input of patients’ classifiers. For classification, we use

the R package netDx,46,47 which is a network-based patient classifier

that uses the concept of PSNs to integrate several sources of infor-

mation into a network, where nodes are patients and edges reflect

their similarity. The tool learns features that are specific to each class

and uses this information to classify unlabeled samples to the class

thatmore closely resembles them. Binary classificationwas performed

between the classes of incident disease (AD) and controls. The param-

eters of the buildPredictor function from netDx are the following:

numSplits = 100, featScoreMax = 10L, trainProp = 0.8, featSelCut-

off = 9L. The significant features detected in the training run are used

to classify the test set of samples and validate the predictivity of the

features.

Additionally, we used pollution levels at the participants’ geocoded

residential addresses to perform a classification task based on the sep-

aration of the population into two classes corresponding to higher (HI)

and lower (LO) levels of pollution. We included only controls to deter-

mine the features linked to pollution exclusively and avoid confounding

with effects of AD. The separation was achieved using k-means clus-

tering (k = 2) on the lower-dimensional representation of the first two

principal components of the five air pollutants, explaining 93.6% of

the variance. The smaller class (HI) contained 70 samples, so we down-

sampled the LO group to create a balanced dataset, obtaining a total of

140 samples.Other featuresused in this settingwere the sameas those

described in earlier sections, but in this case, 551 biological pathways

resulted from the initial preprocessing.

Significance testing

Overlap between deregulated genes in transcriptomic analysis and

significant pathways in the population-based Rotterdam Study was

computed by counting the number of pathways containing deregulated

genes and being significant in the Rotterdam Study. Significance was

assessed by randomly subsampling the full set of genes used to per-

form transcriptomic analysis 1000 times and computing the overlap

with genes inAD-specific pathways. Theempiricalpvaluewasobtained

as the number of times the random sets of genes resulted in an equal or

higher number of overlapping pathways than what was observed with

the true set of deregulated genes.

3 RESULTS

3.1 Transcriptomic data

miRNA and mRNA expression was determined in exposed OM cells by

sequencing in the following experimental groups: control clean air, AD

clean air, control DE exposed, and AD DE exposed. Only genes with

adjusted p values< 0.05were reported for every comparison.

Before assessing the effects of DE exposure on the OM cell model,

we first quantified changes in mRNA expression between the control

and AD ALI cultures in the clean-air groups to determine solely the

effect of existing AD pathology on the gene expression profiles. When

comparing clean-air controls originating from AD individuals, the AD

clean air group, against cognitively unimpaired individuals, the con-

trol clean air group, we found 483 differentially expressedmRNAs. For
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SAVELEVA ET AL. 8831

additional evaluation of the AD-related phenotype in this cell model,

we computed the retrieval of a network of interactions between the

DEGs and AD markers using the IPA software. In the list of DEGs for

the comparison of “AD clean air” versus “control clean air,” 76 genes

directly associated with AD were found. Among these AD-associated

genes, 47 were deregulated in our dataset, and the deregulation of 29

more genes was calculated by IPA (Figure S1). HSPA1, NQO1, HMOX1,

PLAU, SNRNP70, CDC42EP3, SQSTM1, XBP1, and UCHL1 were among

the deregulated genes in the AD OM cells, which were also previously

reported to be altered in AD.48–52 These data confirm our previ-

ously published findings that OM cells from AD individuals maintain

a disease-related phenotype in culture13,14 and that this cell model

is suitable for preclinical research.12 The detailed pathway analysis is

presented in SupplementaryMaterial (Figure S1).

To quantify the response of both control and AD cells to DE expo-

sure, initially we aimed to assess whether the exposure design induced

any significant toxic responses. Cytotoxicity was assessed in the clean

air control andDE-exposed samples from the cell culturemediumusing

the LDH release assay and DNA Damage ELISA kit 3 days after expo-

sure at ALI. No exposure-induced or genotype-specific changes in LDH

and 8-hydroxy-2′-deoxyguanosine release were detected by two-way

ANOVA inOMcells derived fromcontrol donors or individualswithAD

(Figure S2).

WhenmRNAexpressionwas assessed,wedetected a robust change

in transcriptomic responses. Strikingly, in accordance with our hypoth-

esis, AD cells were more susceptible to DE exposure than cells derived

from healthy controls, with four times higher numbers of DEGs

detected. In cells originating from cognitively unimpaired individuals,

a total of 161 significant DEGs were detected when clean air control

was compared with DE-exposed cells. Among those genes, 79 DEGs

were significantly upregulated after exposure, and 82 were downreg-

ulated (adj. p value < 0.05) (Supplementary Material S2). In AD cells,

585 DEGs were detected when DE-exposed cells were compared to

the clean air control. A total of 287 DEGs were significantly upreg-

ulated in AD DE-exposed cells, and 298 were downregulated (adj. p

value< 0.05) (SupplementaryMaterial S2). The numbers of unique and

common significantly altered DEGs after DE exposure in both control

and AD cells are presented in Figure 1A. Among common significant

DEGs in both AD and control cells after exposure, we found heat shock

protein Family A (Hsp70) Member 6 (HSPA6) to be highly upregulated.

Additionally, HSPA1A from the same family of HSPs was activated in

both control and AD cells after exposure. Heme oxygenase 1 (HMOX1)

and glutamate-cysteine ligase modifier subunit (GCLM) proteins had

the second-highest expression values (Figure 1A). Both genes were

previously reported to be involved in the oxidative stress response in

both healthy and AD cells.54,55 In both AD and control cells, a group of

the top common upregulated genes induced by exposure were either

oxidative stress response genes or members of HSPs.

Among the downregulated genes in DE-exposed control cells, we

found macrophage-stimulating protein (MST1, logFC −0.5) and C-X-C

motif chemokine ligand 1, a chemokine that is involved in inflammation

and acts as a chemoattractant for neutrophils (CXCL1, logFC −0.25)
(SupplementaryMaterial S2).

In AD cells, the Fos gene family member FOSB was highly down-

regulated after DE exposure (logFC −2.77) (Figure 1B, Supplementary

Material S2). FOSB was previously found to be deregulated in lung

cells after PM10 exposure.56 In addition, nuclear receptor subfamily 4

group A (NR4A) genes were highly downregulated in AD cells after DE

exposure. The NR4A family consists of three members: NR4A Mem-

ber 1 (NR4A1, logFC −1.86 in AD DE-exposed cells), NR4A2 (logFC

−1.68 in AD DE-exposed cells), and NR4A3 (logFC −0.92 in AD DE-

exposed cells) (Figure 1B, Supplementary Material S2), all of which

were downregulated.

Oxidative stress induction is a commonly reported cellular con-

sequence of exposure to air pollution that is described in a variety

of models. Therefore, we evaluated whether DE exposure at ALI

could cause the induction of oxidative stress genes also in the unique

human OM cells. In total, we found 13 oxidative stress-related genes

deregulated in control cells after DE exposure and 18 deregulated

oxidative stress-related genes in AD-exposed cells (Figure 2). Genes

were considered related to oxidative stress response if they were

annotated as part of either the biological process “response to oxida-

tive stress” (GO:0006979) or “cellular response to oxidative stress”

(GO:0034599).Ourdata showed that theoxidative stress pathwaywas

deregulated by bothmRNAs andmiRNAs in the AD cells.

3.1.1 Integration of mRNA and miRNA expression

We additionally performed an analysis of miRNA expression values in

exposed cells and analyzed the correlation betweenmRNAandmiRNA

expression values. Differential expression miRNA values for each ana-

lyzed group are presented in Supplementary S3. SomemiRNAs that are

altered after DE exposure in our data were previously reported to be

deregulated in AD. In control cells, miR-1200, miR-514b-3p, and miR-

340-5p were deregulated after DE exposure (Supplementary Material

S3) and were previously reported as either biomarkers of AD or to

be deregulated in AD.57,58 Additionally, three top upregulated miR-

NAs, miR-601, miR-1197, and miR-591, in DE-exposed control cells

were previously identified as tumor suppressors.59–61 Notably, miR-

4281, which is upregulated inDE-exposed control cells, was previously

reported to be similarly upregulated after exposure of lung cells to

aldehydes, which are present in pollutants.62 We propose that this

miRNA is implicated in both OM and nasal cells; however, the exact

pathways that it activates require further investigation.

For the integration ofmRNA andmiRNA expression values, we inte-

grated differential miRNAs and mRNAs in each group for verifying

the detected expression patterns and finding common components

involved. A full list of differentially expressed targets of differential

miRNAs is in Supplementary S3. Notably, we found some miRNAs,

namely, miR-663a, miR-4792, and miR-508-5p, to be inversely corre-

latedwith their target genes related to oxidative stress response in the

ADDE-exposed group (Figure 3).

In DE-exposed control cells, there were also two miRNAs, miR-

6828-5p and miR-1197, with an inverse correlation to the expression

of their oxidative stress-related target genes. We further identified
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8832 SAVELEVA ET AL.

F IGURE 1 Transcriptomic changes in control and ADOMcells caused by DE exposure. Common and top deregulated genes. (A) List of
common significant DEGs in both control and AD cells after DE exposure (p-adjusted< 0.05) sorted by decreasing logFC. Venn diagram showing
number of DEGs in AD and control cells after exposure. (B) Heatmap showing expression value formost deregulated genes (highest absolute logFC
value) after DE exposure (p-adjusted< 0.05). AD, Alzheimer’s disease; DE, diesel emissions; DEG, differentially expressed gene.

target genes involved in unfolded protein response (UPR) in both

control and ADDE-exposed groupswith an inverse correlation to their

regulating miRNA, miR-601 regulating HSPA6 and HSPH1 in control

exposed cells, andmiR-1246 andmiR-663a in AD exposed cells.

3.2 Pathway analysis

3.2.1 Canonical pathways

We found a striking difference between the control and AD cell

responses to DE exposure in our pathway analysis. Among signif-

icantly activated pathways after DE exposure in control cells, we

found only the nuclear factor erythroid 2–related factor 2 (NRF2)-

mediated oxidative stress response pathway (Figure S3) and xenobi-

otic metabolism to be activated. Activation of NRF2 and xenobiotic

metabolism signaling pathways indicates activation of the protective

cell defense system in control cells, which includes drug-metabolizing

enzymes, xenobiotic transporters, and antioxidant enzymes. Xenobi-

otic metabolizing enzymes play a crucial role in the biotransformation,

metabolism, and detoxification of xenobiotics, including various types

of pollutants, to protect cells against potential harmful insults from the

environment. For the AD cells, the number of pathways altered by DE

exposure was significantly higher (Figure 4A).

3.2.2 Upstream regulators

When top significant upstream regulators were assessed, we observed

significant activation values for NFE2L2, the gene encoding the NRF2

transcription factor, in both control and AD cells after exposure.

This confirms the key role of the NRF2 antioxidative stress response

as a defense mechanism activated in OM cells after air pollution

exposure (Figure 4B). Additionally, we assessed the downstream tar-

gets of the NRF2 transcription factor and found a great variety of

genes to be upregulated in both control and AD cells after exposure

(Figure 4C). The second most activated upstream regulator in AD cells

after NFE2L2 was N-acylsphingosine amidohydrolase responsible for

ceramide breakdown – ASAH1 (Figure 4B).

3.2.3 Unfolded protein response pathway is highly
attenuated (and thus upregulated) in AD cells

Cells regulate the protein homeostasis of the endoplasmic reticulum

(ER) through the UPR. The UPR is not activated under normal con-

ditions, but under stress conditions it can become activated due to

an accumulation of unfolded proteins. HSP70, a chaperone, acts as an

important member of the UPR pathway and was found to be highly

upregulated only in AD cells after DE exposure at ALI (Figures 4A, 5).
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SAVELEVA ET AL. 8833

F IGURE 2 Induction of oxidative stress response in control and ADOMcells after DE exposure. Volcano plot highlighting themost altered
oxidative stress genes after DE exposure in control (A) and AD (B) OM cells. Here, we labeled on the plot genes that were previously reported in a
GeneOntology biological process related to oxidative stress. The y-axis of the volcano graph is -log10 (p value), the x-axis is the logFC value; red:
upregulated genes, blue: downregulated genes. (C) Heatmap of top-upregulated oxidative stress-related genes induced by DE exposure in AD cells
(left) and control cells (right). The asterisk indicates the genes significant in the category. On top is indicated the number of significant genes that
cause an enrichment in oxidative stress. AD, Alzheimer’s disease; DE, diesel emissions; OM, olfactorymucosa.

Additionally, heat shock protein Family A (Hsp70) Member 6 (HSPA6),

a component of UPR pathway, was found to be highly upregulated in

DE-exposed AD cells (Figure 1). These results suggest that the UPR

pathway is deregulated on both mRNA and miRNA levels. Similarly,

the BAG2 pathway, which shares several common proteins with the

UPR pathway, was found to be highly activated in DE-exposed AD cells

(Figure S4). The ER stress pathway, which is a component and activator

of UPR, was also found to be activated in DE-exposed AD cells (Figure

S5).

We hypothesized that HSP70 induction in exposed cells can be part

of the cellular protective mechanism against pathological processes

induced by exposure, such as the aggregation of unfolded proteins.

Therefore, we sought to quantify HSP70 protein release from exposed

cells. A significant increase in the concentration of HSP70 in cell media

was found after exposure in AD but not in control cells (Figure 6A).

Lastly, we assessed possible predictive/prognostic functional mark-

ers, such as smell loss (anosmia), and morphological markers, such as

abnormal olfactory epitheliummorphology, in our data. For this predic-

tion analysis, we conducted the retrieval of a network of interactions

between our DEG list of contrast (control DE vs. control air, AD DE

vs. AD air) and markers of anosmia or markers of abnormal morphol-

ogy of the olfactory epithelium using IPA software. When we assessed
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8834 SAVELEVA ET AL.

F IGURE 3 Differentially expressedmiRNA–mRNA relationships in (A) control and (B) ADOMcells after DE exposure. Specifically, the
anticorrelated relationships betweenmiRNA and genes of some relevant pathways are depicted. Pathways investigated relate to oxidative stress
response (GO:0006979 andGO:0034599) and response to unfolded protein or protein folding in the ER (GO:006986 andGO:0034975). The color
scale corresponds to the logFC expression of miRNA andmRNA, the triangle-shaped nodes represent miRNA, while circles aremRNAs. Colored
borders of nodes indicate the target genes involved in the respective pathways. AD, Alzheimer’s disease; DE, diesel emissions; ER, endoplasmic
reticulum; OM, olfactorymucosa.

whether DE exposure might be associated with markers of anosmia,

we found only two genes (Slc7A11 and BACH1) involved in smell loss

according to IPA annotation and deregulated by DE exposure in con-

trol cells (Figure S6). When markers of an abnormal morphology of

epithelial tissuewere assessed, 14 genes that are affected by exposure

in control cells were found to be associated to this condition (Figure

S7). This result should be interpreted with caution since most of those

14 genes are also implicated in a wide variety of cellular pathways. In

contrast to control cells, when the same analysis was performed in AD

cells, exposure resulted in differential expression of 21 genes associ-

ated with anosmia (Figure S8). We also detected 48 genes, like TGFB1,

CYLD, REL, NFATC2, BCL3, E2F4, and others, to be deregulated after

exposure, and three genes predicted to be affected among markers of

abnormal epithelial tissue morphology in DE-exposed AD cells (Sup-

pementary Figure S9). These provide prediction markers that can be

potentially assessed in real-life exposures and support the hypothesis

that ADpatients are an at-risk group for adverse air pollution exposure

effects.

3.3 DNA methylation and DMR–DEG correlation

Epigenetic modifications can govern gene expression without altering

the DNA sequence and therefore may react rapidly to environmental

changes. One of the main epigenetic alterations, DNA methylation, is

crucial for the control of gene expression as well as for the stabiliza-

tion of genome and chromatin modification.63 Alterations in the DNA

methylation profile have been detected after air pollutant exposures

in human blood and lung samples,64 and patterns of DNA methylation

are attenuated in several diseases, representing a promising target for

biomonitoring and identification of prognosis markers.65 Only a few

studies currently exist that attempted to estimate the effects of air pol-

lution on both transcriptome and DNA methylome profiles.66,67 Here,

we aimed to identify DNA methylation sites that are altered by DE

exposure and to find a correlation between methylation profiles and

mRNA expression. DNA methylation, especially within gene promot-

ers, CpG islands, and gene bodies, is associated with changes in gene

expression.We first assessedmethylation levels for different positions

and regions in the genome. We made pair-wise comparisons for the

groups AD clean air versus control clean air, control DE exposed ver-

sus control clean air, and AD DE exposed versus AD clean air. The

comparison is presented as differentially methylated positions (DMPs)

and regions (DMRs). Overall, 262933 DMPs were found when the AD

clean air groupwas comparedwith control clean air cells. 15222DMRs

were found in the gene body: 14090 with positive methylation differ-

ences (hypermethylation), 1132with negativemethylation differences

(hypomethylation), and 9586 DMRs with methylation in the promoter

region. When we compared control DE exposed cells with the control

clean air group,we found21DMPs, 5212DMRs in the genebody (3754

with positive methylation difference and 1458with negative), and 890

DMRs in promoter regions. For AD cells, DE exposure resulted in 13

DMPs, 5659 DMRs in the gene body (2097 with positive methylation

difference and 3562 with negative) (Supplementary Material S4), and

1088 DMRs in promoter regions. Notably, while in control cells more

genes were hypermethylated after exposure, in DE-exposed AD cells

we observed slightly higher amounts of hypomethylated genes.
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SAVELEVA ET AL. 8835

F IGURE 4 (A) Top canonical pathways activated by DE exposure in OM cells provided by IPA software, sorted by z-score value. (B) Top
significant transcription factors, sorted by activation value (z-score). (C) Heatmap showing NRF2-mediated oxidative stress response genes
affected by DE exposure in control and ADOMcells. The asterisk indicates the genes significant in the category and that were used in the
enrichment. On top is indicated the number of significant genes that cause an enrichment in oxidative stress. AD, Alzheimer’s disease; DE, diesel
emissions; IPA, Ingenuity Pathway Analysis; NRF2, nuclear factor erythroid 2–related factor 2; OM, olfactorymucosa.
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8836 SAVELEVA ET AL.

F IGURE 5 Activation of UPR pathway in ADOMcells after DE exposure calculated with IPA software. AD, Alzheimer’s disease; DE, diesel
emissions; IPA, Ingenuity Pathway Analysis; OM, olfactorymucosa; UPR, unfolded protein response.

To investigate how methylation affected mRNA expression in our

study, we integrated the methylomes and transcriptomes obtained.

Overall, 352 DEGs were found for the comparison between the clean

air AD and control groups, among which 12 DEGs were hypomethy-

lated and upregulated in AD, while 164 were hypermethylated

and downregulated in AD (Figure S10). In the control group, 41

DEGs were found in comparisons of DE-exposed cells with clean

air controls. Only three of those genes were hypomethylated and

upregulated, and 16 were hypermethylated and downregulated,

including the FOXF1 gene (Figure 6C). In AD cells, we found 165

DEGs where methylation data were intersected with mRNA expres-

sion data for the comparison of DE-exposed AD cells versus clean

air AD. Fifty genes were found to be both hypomethylated and

upregulated, and 25 genes were hypermethylated and downregu-

lated, including the highly downregulated gene N4A2 (logFC −1.68)
(Figure 6D).

 15525279, 2024, 12, D
ow

nloaded from
 https://alz-journals.onlinelibrary.w

iley.com
/doi/10.1002/alz.14347 by U

niversity Palacky, W
iley O

nline L
ibrary on [29/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



SAVELEVA ET AL. 8837

F IGURE 6 (A) HSP70 level is increased in ADOMcell media after DE exposure. Quantification of HSP70was performedwith ELISA and t-test
(unpaired, two-tailed, two-way ANOVAwith Sidakmultiple test). Data are presented asmean± SD, **p< .01. (B) Graphical representation of
number of DMRs and relative methylation change (hyper vs hypo) after DE exposure in control and ADOMcells. Figures represent correlation of
DMRswithmRNA expressions altered in control OM cells (C) and ADOMcells (D) after DE exposure. AD, Alzheimer’s disease; DE, diesel
emissions; DMR, differentially methylated region; HSP70, heat shock protein 70; IPA, Ingenuity Pathway Analysis; OM, olfactorymucosa.

3.4 Validation of identified DEGs in class-specific
pathways from Rotterdam Study

The main tasks performed in the Rotterdam Study aimed to (i) identify

biomarkers that were differential in AD compared to controls, (ii) link

the identifiedbiomarkers todifferential air pollutiondata in theRotter-

dam Study, and (iii) link the Rotterdam data to the results from theOM

cell exposures. This approachallowedus tovalidateour in vitro findings

in a human population-based study and elucidate the main pathways

involved in response to air pollution exposure in both control and AD

individuals.

First, we classified patients between the samples belonging into

classes of AD and controls based on disease incidence, obtaining an

area under the receiver operating characteristic (AUROC) of 0.79. The

analysis resulted in 115 features that were significant in predicting

AD (listed in Supplementary Material S5, AD Significant Features),

including three clinical features (APOE ɛ4 carrier, diabetes, education

level) and 112 biological pathways. A full list of identified pathways

is presented in Supplementary Material S5. Then we compared 112

biological pathways that were found to be class-specific by netDx in

AD participants from the Rotterdam Study with the genes identified

in non-exposed AD OM cells and detected similarities. For example,

pathways like amino acid transport, xenobiotic metabolism, inflamma-

tory response, NRF2 pathway, and respiratory electron transport were

found to be AD-specific features in the Rotterdam Study. Similarly,

genes that are part of these pathways were deregulated in non-

exposedOMcells obtained fromAD individuals (SupplementaryMate-

rial S5). Some of these pathways and genes that we found in our analy-

sismayprovide important insights for futureADresearch. For example,

we found pathways like amino acid transport across the plasma mem-

brane to be predictive in AD participants from the Rotterdam Study,

with SLC38A5 and SLC38A1 genes in this pathway to be deregulated in

ADOMcells in our study. Similarly, we found pathways like cytoprotec-

tion byHMOX1 (genesHELZ2, STAP2, LRPPRC), apoptosis (HGF, ANKH),

inflammatory response (PTGER4, TNFRSF1B, LYN, HRH1, IL1R1), xeno-

biotic metabolism (AKR1C2, NPC1, DHRS1, IL1R1, MAN1A1, PMM1,

ACOX3, LONP1), fatty acid metabolism (AKR1C3, PRKAA2, CYP2U1,

ACOX3, MMUT), and many others to be significantly deregulated in
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8838 SAVELEVA ET AL.

both in vitro AD cells and class-specific AD individuals from the Rot-

terdam Study (SupplementaryMaterial S5, AD Significant Features).

We then compared the AD-specific pathways that were identified

from the Rotterdam Study with the genes that were deregulated by

DE exposure in theOM cells in vitro.We found that genes deregulated

by DE exposure in the AD-exposed OM cells were represented in

AD-specific pathways more often than what would be expected by

chance (p value < 0.05, median fold change 1.163). Overall, we found

a larger number of pathways with DEGs in AD-exposed cells than in

control cells (93 vs 52). Almost all pathways found in controls were

included in the AD-exposed list, indicating greater dysregulation in

DE-exposed AD OM cells, linking them to the AD-specific pathways

found in the Rotterdam Study. Among AD-specific pathways con-

taining DEGs from DE-exposed AD OM cells, we found pathways

related to apoptosis and caspase-mediated cleavage (genes CASP7,

ROCK1, STK24, VIM, HMOX1, ISG20, DNAJC3, RNASEL, TNFRSF12A,

ROCK1, CYLD, MCL1, IGF2R), cytoprotection by HMOX1 (HMOX1,

TBL1XR1, SCO2, CARM1, UBC, NCOA2, SIN3A, PSMB3), mitochondria-

andmitophagy-related pathways (PMPCA, NDUFB7, NDUFS6, NDUFS3,

NDUFV1, MCAT, COX17, TOMM5, TOMM40, HSPD1, TIMM50, UBC),

and many others. A full list of DEGs from DE-exposed control and

AD OM cells that are part of AD-specific pathways in the Rotter-

dam Study is given in Supplementary Material S5, AD Significant

Features.

In another analysis, we classified non-demented control individuals

from the Rotterdam Study based on the pollution levels in their resi-

dential area (high pollution [HI] and low pollution [LO]). We aimed to

detect clinical features and pathways specific to residents in highly pol-

luted areas. The identification of the classes HI and LO was achieved

by clustering samples by the first two principal components calculated

on five pollution metrics, as described in Methods, under the Classifi-

cation section. Using netDx we achieved a binary classification with an

AUROC of 0.58.

We then explored pathways specific to HI residents, identifying 61

features, including 55 biological pathways, two clinical features (age

and hypertension medication), and four metabolite groups (ketone

bodies, aromatic amino acids, low-density and high-density lipoprotein

ratios) (all listed in SupplementaryMaterial S5,HI SignificantFeatures).

Notably, most of the pathways that were found as signature pathways

for the HI group in the Rotterdam Study were also found to include

DEGsdetected inDE-exposed control andADOMcells (p value<0.05;

median fold change control=1.106, AD=1.979). A full list of the genes

and pathways detected in the HI group can be found in Supplementary

Material S5, HI Significant Features. Strikingly, when we compared the

biological pathwaysdetected inHI residents from theRotterdamStudy

with DE-exposed AD and control OM cells, we found, among other

things, that the NRF2 pathway was involved in response to air pollu-

tion in all groups analyzed (Figure 7). Importantly, the NRF2 pathway

was not only found to be a significant feature describing the HI group

in the Rotterdam Study, but additionally many genes involved in the

pathway were found to be deregulated upon exposure in both control

and ADOMcells (SupplementaryMaterial S5, HI Significant Features),

confirming a key role of this pathway in air pollution response. Strik-

ingly, we additionally found that pathways of influenza infection and

viral RNA transcription were activated in AD and in control individuals

exposed to high levels of pollution, and genes that are components of

these pathwayswere also found to be altered in our study (Figure 7). As

expected, we found a higher number of pathways having DEGs in AD-

exposed OM cells compared to exposed controls (49 vs 33), with only

one pathway being exclusive for controls (Figure 7). Among common

pathways that were identified as significant in the HI group in the Rot-

terdam Study and that also had DEGs in both control and ADOM cells

after DE exposure, we found pathways like a reactive oxygen species

pathway, DNA repair pathway, and P53 pathway (Figure 7, Supplemen-

taryMaterial S5). These findings confirmour findings in vitro at a larger

scale of population-based study data and consider the found pathways

and gene targets significant features of response to air pollution.

In conclusion, when we assessed the overall analysis of the Rot-

terdam data, among the pathways identified in the AD compared to

the control setting and in the comparison between pollution levels,

the NRF2 pathway was the only overlapping identified feature. This

finding highlights a key role of the NRF2 pathway in both AD disease

pathogenesis and air pollution-induced responses.

4 DISCUSSION

This study investigated the impact of DE exposure on OM cells from

cognitively unimpaired individuals and individuals with AD using the

ALI exposure system to mimic real-life conditions. Repeated low-level

DE exposures induced significant transcriptomic responses, changes

in miRNA and DNA methylation, and pathway activation. Cells with

AD pathology showed heightened sensitivity, evidenced by a four-fold

increase in the number of DEGs found. One of the key DEG fam-

ilies found altered in exposed AD cells was the NR4A family. This

subfamily of nuclear receptors is critical for cellular homeostasis and

DNA repair in health and disease.68 mRNA levels of three members

of this family, NR4A1, NR4A2, and NR4A3, were downregulated in DE-

exposed AD cells, suggesting that TRAP exposure negatively impacts

their protective functions. Interestingly, some of theseDEGswere pre-

viously found to be downregulated in othermodels.69–73 It is therefore

plausible that these factors play a key role in pollution-mediated AD

progression.

We additionally addressed the promising direction of research

showing that miRNA profiling can be a great tool for studying both

AD progression57,58 and air pollution effects.74,75 Integrating miRNA

andmRNAexpressiondata revealed that certainmiRNAs, namely,miR-

663a, miR-4792, and miR-508-5p in DE-exposed AD cells and miR-

6828-5p and miR-1197 in the control exposed group, were inversely

correlatedwith their target genes related to oxidative stress response.

Additionally, we identified genes involved in the UPR with inverse cor-

relations to their regulating miRNAs in both exposed groups: miR-601

in control cells andmiR-1246 andmiR-663a in AD cells. These findings

highlight that certain targets are regulated at both mRNA and miRNA

levels in toxicological responses to TRAP and suggest new miRNA

targets for further research.
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DE genes DE genes 

(B)(A) OM Control exposed genes in Rotterdam Study 
pathways

OM AD exposed genes in Rotterdam Study 
pathways

17 132

ControlAD

F IGURE 7 Number of DEGs in DE-exposed ADOMcells (A) and DE-exposed control OM cells (B) found in representative pathways of highly
polluted areas whose residents participated in Rotterdam Study. Venn diagram represents overlap of the two pathway lists. AD, Alzheimer’s
disease; DE, diesel emissions; DEG, differentially expressed gene; OM, olfactorymucosa.

4.1 Canonical pathways

Our findings align with previous studies proposing NRF2 transcription

factor as a regulator of PM responses in both brain76 and periphery.

In DE-exposed control cells, we observed high activation of several

components of the NRF2 pathway, as well as activation of the NRF2

transcription factor itself. We also found that a xenobiotic pathway

was highly activated in DE-exposed control cells. This finding is in

line with previous research highlighting the key role of this pathway

in cell detoxification response to air pollutants, which was previously

reported in various cell models exposed to PM.77–79 For the first time,

we report this pathway activation in exposure scenarios that are closer

to real-life conditions and report this cell defense response in human

OM cells. In contrast, DE-exposed AD cells showed dampened acti-

vation of both NRF2 and xenobiotic metabolism pathways. Deficient

activationof theseprotective cell pathways inADcells resulted inover-

all higher pathological responses, including the deregulation of a wide

variety of genes and pathways such as UPR and ER stress response,

eNOS, and apoptosis signaling.

Our results demonstrate that ER stress is highly activated by DE

exposure in AD cells. Notably, activation of the ER stress pathway

was previously reported after exposure to low levels of 1-nitropyrene,

a PAH abundant in DE, in human epithelial cells.80 Our findings are

aligned with this study since our chemical analysis confirmed the

presence of 1-nitropyrene in our samples.

HSPs are key players in protein folding and degradation, protecting

cells from ER stress-induced apoptosis81 and toxic stress induced

by chemicals and metals.82 Animal studies have indicated a major

role of HSP activation in response to environmental contamination,

as reviewed by Moreira-de-Sousa et al.,83 highlighting HSP70 as an

environmental contamination biomarker.81 In this study, we found

not only upregulation of several HSP70 family members’ proteins in

DE-exposed AD cells but also high activation of UPR and ER stress

pathways and a significant increase in released HSP70 protein.

We hypothesize that HSP70 induction may be protective against

pathological processes induced by exposure, like unfolded protein

aggregation and ER stress. The increment in HSP70 release in exposed

AD cells found in our study indicates that HSP70 is not only upreg-

ulated inside cells but also actively released into the extracellular

space.

4.2 DNA methylation and DMRs-DEGs
correlation

Overall, we found a slightly higher number of gene body methyla-

tion sites in DE-exposed AD cells than in control cells, with a higher

number of hypomethylated genes in AD cells. In contrast, control

cells had a significantly higher proportion of hypermethylated genes,

including the Forkhead Box F1 (FOXF1) gene, which encodes a tran-

scription factor important for extracellularmatrix integrity. Previously,

FOXF1 hypermethylation was reported in toxicology,84,85 highlighting

the importance of this gene in response to environmental contam-

inants. Our data support the importance of FOXF1 in cell defense

against metals and different xenobiotic components that are present

in DE.
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4.3 Validation of results obtained in Rotterdam
Study

Assessing the data from the Rotterdam Study, we analyzed AD- and

air pollution-specific responses in a population-based cohort and inte-

grated this analysis with our in vitro data. Classifying individuals in the

Rotterdam Study based on disease incidence, we identified 115 signifi-

cant features predictive ofAD, including three clinical features and112

biological pathways, such as amino acid transport, autophagy, inflam-

matory response, NRF2 pathway, respiratory electron transport, and

many others. Then we performed a comparison of AD-specific path-

ways in participants from the Rotterdam Study with DEGs found in

non-exposed ADOM cells compared to control OM cells and revealed

striking similarities. This convergence, especially in key pathways asso-

ciated with AD, reinforces the significance of these pathways and

confirms the translational potential of this cell model.

We additionally analyzed which DEGs found in the in vitro study in

DE-exposed control and AD cells were also components of AD-specific

pathways found in the Rotterdam Study. This analysis allowed us to

identify genes that were components of AD-specific pathways that

werederegulated in control andADOMcells uponexposure. The align-

ment confirmed the relevanceof our in vitro findings to theAD-specific

pathways identified in the Rotterdam Study.

To assess exclusively air pollution-specific responses in the Rotter-

dam Study, we classified non-demented individuals by pollution levels

in their residential areas. We found 61 significant features, including

biological pathways, clinical features, and metabolite groups, specific

to HI residents. These features identified as specific to HI residents

can provide important insights for future studies. Remarkably, many

pathways identified as signatures for the HI group in the Rotterdam

Study significantly overlapped with pathways found in DE-exposed

control and AD OM cells, highlighting the impact of pollution. Overall,

our analysis revealed that the NRF2 pathway emerged as a consistent

response to air pollution exposures. Notably, this pathway not onlywas

a predictive feature for the HI group in the Rotterdam Study but also

showed consistent deregulation in exposed control and AD OM cells,

emphasizing its pivotal role.

4.4 Summary

The higher number of pathways with DEGs in AD-exposed OM cells

compared to controls further underscores the unique and intensified

response of AD cells to environmental stressors. Common pathways

identified across population-based and in vitro studies, such as NRF2

pathway, reactive oxygen species pathway, DNA repair pathway, and

P53 pathway, strengthen the robustness of our findings.

Overall, our findings reveal significant differences in the responses

of control and AD OM cells to DE exposure, indicating that AD cells

are more susceptible. Our integrative analysis successfully linked AD-

specific and air pollution-specific pathways from the Rotterdam Study

to OM cells and underscored the relevance of our findings. The con-

sistent alignment of pathways and genes across these two datasets

provides strong evidence for the role of the NRF2 pathway, xenobiotic

metabolism, and other identified pathways in both AD and air pollu-

tion responses. This work provides a great example of validation of

in vitro data in population-based human cohort studies for increasing

the translational potential of research and successful identification of

relevant systemic biological targets.

It must be noted that this study has several limitations. First, the

absence of high-throughput proteomics limits our understanding of

the downstream effects of the observed transcriptomic deregulation,

making it difficult to assess the functional impact of DE exposure. Sec-

ond, the in vitro study included only female donors, which does not

adequately represent the population response due to potential gen-

der differences in geneexpression. Third, the experimental design lacks

temporal resolution or variation in fuel types, restricting insights to

time- and fuel-dependent transcriptomic responses to TRAP exposure

or air pollution exposure in general. Lastly, multiomics analysis of biop-

sies and clinical material from individuals exposed to varying levels of

TRAP over their lifespanwould expand our understanding and provide

themost relevant exposure scenario for studying TRAP effects. Future

research addressing these limitations could offer a more holistic and

in-depth understanding of the biological processes triggered by TRAP

exposure in both health and AD.

As global air pollution rises, it is imperative to uncover and address

its impactonhumanhealth, especially in vulnerablepopulations likeAD

individuals. Further investigation is warranted to validate and advance

biomarker discovery for air pollution effects.
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