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Leveraging interictal multimodal features and
graph neural networks for automated planning
of epilepsy surgery
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Precise localization of the epileptogenic zone is pivotal for planning minimally invasive surgeries in drug-resistant epilepsy. Here, we
present a graph neural network (GNN) framework that integrates interictal intracranial EEG features, electrode topology, and MRI
features to automate epilepsy surgery planning. We retrospectively evaluated the model using leave-one-patient-out cross-validation
on a dataset of 80 drug-resistant epilepsy patients treated at St. Anne’s University Hospital (Brno, Czech Republic), comprising 31
patients with good postsurgical outcomes (Engel I) and 49 with poor outcomes (Engel II-IV). The GNN predictions demonstrated
a significantly better (P < 0.05, Mann—Whitney-U test) area under the precision-recall curve in patients with good outcomes (area un-
der the precision-recall curve: 0.69) compared with those with poor outcomes (area under the precision-recall curve: 0.33), indicating
that the model captures clinically relevant targets in successful cases. In patients with poor outcomes, the graph neural network pro-
posed alternative intervention sites that diverged from the original clinical plans, highlighting its potential to identify alternative thera-
peutic targets. We show that topology-aware GNNs significantly outperformed (P < 0.05, Wilcoxon signed-rank test) traditional
neural networks while using the same intracranial EEG features, emphasizing the importance of incorporating implantation topology
into predictive models.

These findings uncover the potential of GNNs to automatically suggest targets for epilepsy surgery, which can assist the clinical
team during the planning process.
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Introduction

For patients with drug-resistant epilepsy (DRE), minimally
invasive surgery is a highly specialized procedure aimed at re-
secting or functionally disconnecting the epileptogenic zone
(EZ) from the healthy brain to prevent seizure generation.
The primary goal of epilepsy surgery is to achieve seizure
freedom or a significant reduction in seizure frequency and
severity, thereby enhancing the patient’s quality of life. The
success of such procedures is heavily dependent on accurate-
ly identifying and targeting the EZ, which consists of the spe-
cific areas of the brain indispensable for generating seizures.'

sEEG - stereoelectroencephalography
CZE - Czech Republic

Epilepsy surgery planning is a complex task that involves
integrating various types of data, such as clinical history,
MRI, scalp EEG, PET, single-photon emission computed
tomography imaging, neuropsychology, and intracranial
EEG (iEEG). iEEG is an indispensable tool in the pre-surgical
evaluation of epilepsy patients. Unlike traditional non-
invasive methods, iEEG involves the placement of electrodes
directly on the brain’s surface (electrocorticography) or
within its tissue (stereo EEG, sEEG), providing a direct meas-
ure of neural electrical activity from specific brain regions
(e.g. 150-200 recording channels) with high temporal reso-
lution (up to 32 kHz) spanning over extended recording
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durations from several days to a few weeks. The primary use
of iEEG is to capture ictal events and identify the seizure on-
set zones. Additionally, analysing interictal events, including
high-frequency oscillations®* (HFOs), very-high-frequency
oscillations,® epileptiform discharges,® relative entropy,’
and other biomarkers provides evidence for the EZ.
Nevertheless, the effectiveness of various interictal iEEG bio-
markers for localizing the EZ remains a subject of ongoing
research.

Traditional machine learning techniques, such as logistic
regression and support vector machines (SVM), based on
interictal iEEG biomarkers have shown promising results
in the automatic localization of the EZ.°!! For instance,
Cimbalnik et al.® employed a multi-feature SVM approach
to predict the seizure onset zone. At the same time,
Gunnarsdottir utilized features based on functional con-
nectivity derived from linear time-invariant systems theory
and a logistic regression classifier to localize the EZ.’
Multimodal approaches based on MRI and high-density
EEG,'? or MRI-PET and HFOs'? were also used for EZ lo-
calization. However, these methodologies lack the spatial
information about iEEG implant topology that can prove
critical for the accurate EZ localization. Such information
can include the Montreal Neurological Institute (MNI) co-
ordinates of electrode contacts or the distances between
contacts.

In recent years, graph neural networks (GNNs) have
emerged as a powerful tool for analysing complex networks
represented as graphs.'* A graph is a mathematical object
that consists of nodes and edges, where nodes represent en-
tities and edges represent relationships between them. In
EEG analysis, a graph can be constructed by representing
each electrode contact as a node and the spatial distance or
functional connectivity between electrodes as edges. This
graph structure can capture the spatial and temporal rela-
tionships between different brain regions and the EEG sig-
nals recorded from them.

For example, applying GNNs to EEG analysis has shown
promising results in various tasks, including spike detec-
tion, '’ seizure prediction,'® seizure detection,'”'? and sleep
stage classification.” The potential of GNNs in epilepsy sur-
gery planning is further enhanced by their ability to process
multimodal inputs, as highlighted in a recent review by
Jehi.*! Integrating GNNs with multimodal features presents
numerous challenges and opportunities, such as advancing
graph construction methods and developing more sophisti-
cated GNN architectures.

The optimal graph construction for iEEG analysis (e.g.
based on spatial or functional connectivity) and feature
sets describing graph nodes (combinations of iEEG and
MRI) are currently unidentified. Moreover, it remains to
be seen whether incorporating spatial MNI coordinates en-
hances performance or introduces risks of overfitting.
Including MNI coordinates could potentially bias the model
towards predicting interventions in specific brain regions,
such as the hippocampus, especially if the training dataset
is heavily weighted with temporal epilepsy cases. Model
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predictions heavily influenced by MNI coordinates disre-
garding iEEG features would lead to undesirable clinical
outcomes.

This paper introduces a multimodal GNN model based on
sEEG features (power in bands, spectral features, spike rate,
spike propagation, and phase-amplitude coupling) and MRI
features incorporating implantation topology (Euclidean dis-
tance between electrode contacts, MNI coordinates, white
matter, and grey matter distribution). The model is tested using
leave-one-patient-out cross-validation on a cohort of 80 pa-
tients with DRE. The study examines how different neural net-
work (NN) architectures (traditional NN versus GNN) and
subsets of features (especially the inclusion of MNI coordi-
nates) affect the model’s performance in EZ localization and
surgery planning,.

Materials and methods

This retrospective study presents and evaluates a new
deep-learning model using a GNN approach for localizing
the EZ. Our investigation aims to fulfil the following objectives:
1. Compare the performance of topology-aware GNNs
model with traditional NNs
We compare GNN, which incorporates implantation
topology represented by relative distances between con-
tacts, with a traditional feature-based NN. Both models
employ identical patient data, feature extraction pipe-
lines, and training strategies. This allows us to investigate
the effect of the inclusion of implant topology on EZ lo-
calization performance.
2. Assess the impact of including MNI coordinates on model
performance
We investigate whether including spatial information in
the form of MNI coordinates of electrode contacts im-
proves model performance or introduces overfitting. We
evaluate multiple configurations—with and without MNI
coordinates—and compare their performance using the
area under the precision-recall curve (AUPRC) and the
area under the receiver operating characteristic (AUROC).
3. Evaluate clinical alignment and spatial proximity to the
resected regions
Finally, we measure how well the models’ predictions
match the clinical gold standard in patient groups cate-
gorized by Engel I (good outcome) and Engel II-1V
(poor outcome). As part of this evaluation, we also quan-
tify the distance between the model’s predictions for most
epileptogenic electrode contacts and the surgically re-
sected regions.

These objectives aim to evaluate whether incorporating im-
plant topology and MNI coordinates within GNNs can en-
hance the performance of EZ localization and potentially
guide more effective surgical strategies in DRE. The work-
flow of the study is illustrated in Fig. 1.
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Figure | Schematics of the study workflow. (1) sEEG recordings are pre-processed, focusing on 30 min of awake resting interictal recording,
and MNI coordinates of SEEG contacts are extracted from coregistered CT/MRI. (2) Features are extracted by calculating univariate features from
the sEEG data and computing Euclidean distances between all channel pairs, excluding connections beyond 12 mm. (3) The data are structured
into a graph where nodes represent the sEEG features and edges represent spatial distances between contacts. Nodes are assigned ground truth
labels based on whether an intervention (resection or thermocoagulation) was performed on them or not. (4) The GNN is built from three graph
attention layers that perform message passing with attention. Graph nodes representing sEEG contacts are classified as intervention versus no
intervention by the network. (5) The models are trained and validated on the Saint Anne’s University Hospital cohort, with 80% of data used for
training and 20% for validation. A patient is left out for testing to assess the model’s prediction performance. The leave one out cross validation
process is repeated N times denoted by (Nx). (5) Comparisons are made between the GNN model and traditional NN across good (Engel I) and
poor (Engel II-IV) outcome patient cohorts using the AUPRC and AUROC performance metrics.

3. Had a preoperative MRI and a post-implantation CT/
MRI for sEEG contact registration. Additionally, in cases

The dataset from St Anne’s University Hospital, Brno, Czech

Republic, was collected between 2011 and 2023 and con-

sisted of a cohort of 124 patients. To be included in the

study, patients had to satisfy the following criteria:

1. Underwent pre-surgical sSEEG monitoring.

2. Received epilepsy intervention: respective surgery, radio-
frequency thermocoagulation (RFTC), or both.

of resection, a post-surgical MRI was required.

4. Had available follow-up (minimum 1 year) to assess
whether the resection or RFTC at electrode contact sites
resulted in a good outcome.*?

The inclusion criteria were met by 80 patients (34 females,
46 males, mean age 33+ 10 years) diagnosed with DRE
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Figure 2 The Preferred Reporting Items for Systematic Reviews and Meta-Analyses chart illustrates the study’s patient
selection process. It details the steps from identifying potential participants (N = 124) to the final inclusion of patients in the analysis (N = 80).
sEEG, stereo-EEG; ECoG, electrocorticography; VNS, vagus nerve stimulation; RFTC, radiofrequency thermocoagulation.

indicated for epilepsy surgery (n=57, 24 Engel I, 33 Engel
II-1V) or RFTC (n=10, 5 Engel 1, 5 Engel II-1V), or com-
bined RFTC and surgery (# =13, 2 Engel I, 11 Engel
II-1V). Epilepsy types were classified as temporal lobe (n =
46) or extratemporal (n = 34). Histopathological findings
included focal cortical dysplasia in 27 patients, hippocampal
sclerosis in 13 patients, unspecified classifications in
15 patients (mainly in the RFTC group), and other patholo-
gies (e.g. gliosis, nodular heterotopia, post-traumatic, and
post-meningoencephalitis changes) in the remaining pa-
tients. A comprehensive dataset description is attached in
Supplementary tables.

Patients with multifocal or bilateral lesions unsuitable for sur-
gery were excluded due to the lack of a direct method to quan-
tify model prediction performance numerically. The Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
chart in Fig. 2 illustrates the patient selection process.

The present study was carried out in accordance with ethical
standards, and the study procedures were approved by

St. Anne’s University Hospital Research Ethics Committee
and the Ethics Committee of Masaryk University. All sub-
jects gave written informed consent in accordance with the
Declaration of Helsinki.

The sEEG dataset consists of 30-minute interictal SEEG re-
cordings collected during an awake resting state according
to standardized clinical protocol at St Anne’s University
Hospital. The recordings are typically made on the second
day following the implantation of electrodes, with the day
of implantation considered day zero. Partial anti-seizure
medication reduction usually occurs on the evening of
Day 1 or the morning of Day 2. Recordings are consistently
conducted at around 10 a.m. and at least an hour away
from a seizure. The acquisition system used for the meas-
urement in the hospital was a BrainScope system (M&I,
BrainScope, Czech Republic). This system allows recording
up to 192 channels with a maximum 25 kHz sampling rate
and common reference montage. Raw data was filtered
with a 2 kHz low-pass filter and down-sampled to 5 kHz
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to avoid aliasing. The electrodes used in all patients from the
dataset were standard intracerebral multi-contact platinum
sEEG electrodes (either DIXI or ALCIS), with each patient
receiving 5-16 sEEG electrodes. The location and number
of electrodes were selected based on clinical reasoning. The
technical parameters of the electrodes were as follows: a
diameter of 0.8 mm; a contact length of 2 mm; an intercon-
tact distance of 1.5 mm; a contact surface area of S mm?; and
a number of contacts being 5, 8, 10, 12, 15, and 18. All the
electrodes were MRI compatible, and their position in the
brain was verified by MRI or a combination of MRI and
CT examination.

The dataset preparation involved several steps. First, a pre-
operative anatomical MRI was coregistered into the post-
implantation CT/MRI space using SPM software”* and nor-
malized to the MNI space. The superposition image was
shown using MRIcron software, and MNI coordinates of
sEEG contacts were manually extracted. Next, a post-
resection MRI was coregistered with the preoperative MRI
to delineate the resection boundaries. We also used coregis-
tration of the post-implantation CT/MRI images with post-
resection MRI to determine the resected electrode contacts.
A senior clinical neurologist inspected the coregistered
MRI images, and the iEEG contacts within the resected
area were identified and marked. Sagging and coregistration
bias were accounted for. The resected or thermocoagulated
contacts were assigned to the ‘intervention’ class (Binary
1), and the untreated contacts were assigned to the ‘no inter-
vention’ class (Binary 0). The sEEG contacts located outside
of the brain were excluded from the analysis.

The node features were calculated from raw sEEG data
(30-min long recordings), where the complete feature set con-
sisted of 6 groups (described below), accounting for 31 features
(exact feature description in Supplementary material). The fea-
tures were selected based on a literature review of currently
available features that were proven effective for the localization
of the EZ. The computational library (developed by our group)
for iEEG feature extraction is publicly available at (https:/
gitlab.com/bbeer_group/development/epycom/epycom).
Feature summary (details in Supplementary material):

1. Power in bands and spectral features: They measure the
overall signal power distribution in frequency bands.
Features: Total power, Spectral Centroid, Power in bands
(Low Delta: 0.1-1 Hz, Delta: 1-4 Hz, Theta: 4-8 Hz,
Alpha: 8-12 Hz, Beta: 12-30 Hz, Gamma: 30-80 Hz,
Powerline interference: 45-65 Hz (including both 50
and 60 Hz), Ripple: 80-250 Hz, Fast ripple: 200-
600 Hz), Delta—Beta ratio, Intra-patient normalized
Delta power.

2. Phase amplitude coupling: This captures the relationship
between the instant phase (angle of Hilbert Transform) of
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a low-frequency signal and the instant amplitude (ampli-
tude of Hilbert Transform) of a high-frequency signal
(phase amplitude coupling Delta: Gamma, Delta:
Ripples, Delta: Fast ripples).

3. Spike rate: This includes absolute spike rates (spikes per
minute) and the per-patient normalized rate on a scale
(0-1). The spike detector was implemented using the
methodology proposed by Janca et al.*

4. Functional connectivity metrics based on spike propaga-
tion: Metrics derived from spike propagation. The fea-
tures calculated from the spike propagation matrix were
based on functional connectivity measures reported by
Gunnarsdottir et al.”: source, sink, centrality, hub, and
authority scores®® characterizing the role and influence
of individual contacts within the network of spike
propagation.

5. MNI coordinates: Electrode contact coordinates in the
standardized MNI space.

6. White and grey matter probabilities: Probabilistic mea-
sures indicate whether a contact is in white or grey matter
based on WM/GM distribution atlas based on MNI
coordinates.

The sEEG features were chosen to capture the local and glo-
bal structure of SEEG activities. Therefore, some features are
normalized per patient, while others are expressed in abso-
lute values. For example, signal power is normalized per pa-
tient, with 0.0 assigned to the contact with the lowest signal
power and 1.0 to the contact with the highest signal power.

HFOs, a common interictal biomarker, were not
included as a feature of the model as recent studies®** have
demonstrated that HFOs do not provide additional informa-
tion for localization compared with interictal spikes.
However, localization results based solely on the HFO rate
detected by the RMS detector’®?” are provided for
comparison.

The graph was generated using SEEG features and the spatial
distances between sEEG contacts. Node attributes were de-
fined by the sEEG features, while edges represented the
Euclidean distances between contacts. To determine the
neighbourhood of each sEEG contact, we applied a heuristic
threshold, considering any edge within 12 mm (including
those connecting contacts from different electrodes) as part
of the neighbourhood. The distance was determined using
a centre-to-centre intercontact step of 3.5 mm, with the un-
derstanding that the sEEG signal is primarily influenced by
its surroundings (approximately distance of +3 contacts,
equating to 10.5 mm). To accommodate potential MRI/CT
coregistration errors, this value was adjusted to 12 mm.
This value is also supported by observations that sEEG is
sensitive to neural activities approximately up to a distance
of 10 mm.?® The ‘Discussion’ section further describes the ef-
fects of distance on model performance.
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A simple GNN architecture utilizing generalized graph con-
volution with attention”” was employed as the classification
model. The model consisted of three layers with 32 hidden
neurones and two output neurones since each node is classi-
fied into one of two classes (intervention/no intervention).
The network architecture was purposely set as very simple
to prevent overfitting since the training dataset is small com-
pared with datasets used in other scientific fields.

In line with best practices in machine learning, a
leave-one-patient-out cross-validation approach was em-
ployed. This method ensures that data from the test patient
does not influence the model’s training and validation
phases, demonstrating the model’s generalizability and pro-
viding unbiased results when applied to novel patients.

The rest of the patients’ data (N—1) were split into 5-folds,
each containing 20% of the patients. Four folds were used
for training, while 1-fold served as the validation set to detect
overfitting and facilitate early stopping. This procedure was
rotated five times, each time producing a new model.
Together, these five models form a classification ensemble,
effectively maximizing the information capacity of the
dataset.

The model was trained over 30 epochs using the
Cross-Entropy Loss with rescaled weights (1:10 weights as-
signed to negative:positive class) and the Adam optimizer,
with a learning rate set at 0.005 and an L2 regularization
weight decay of 0.0001. After each training epoch, the valid-
ation loss and AUPRC were monitored, an early stopping
strategy was used to select the model with the best validation
score.

In the study, the output of the classification ensemble was de-
rived from the average outputs of five cross-validation mod-
els to predict intervention electrode contacts for a novel
patient (leave-one-patient-out testing) completely excluded
from training and validation. An example of model output
and clinical gold standard is depicted in Fig. 3. The model
output probabilities were compared with the clinical gold
standard and quantified by reporting the AUPRC and
AUROC to provide objective and comprehensive evaluation
based on methodology from Hrtonova et al.>°

Given the typical imbalance in EZ localization datasets,
where ~90% of electrode contacts are healthy and only
10% are epileptogenic, AUROC scores can be misleading
as they are heavily influenced by the majority class of
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non-epileptogenic contacts. That is why we emphasize the
importance of the AUPRC, a metric that depends on sensitiv-
ity (SEN) and positive predictive value (PPV), providing a
more focused evaluation of the model’s performance. To en-
sure a comprehensive evaluation of the model’s effectiveness
in handling imbalanced datasets, the AUPRC and AUROC
of a random chance classifier, which are essential to provide
a direct comparison and context were reported. Chance-level
performance in a binary classification task is an AUROC of
0.5, and the AUPRC is equal to the proportion of positive
samples in the dataset.

In the statistical analysis, we utilized the Wilcoxon
signed-rank test to determine if there is a statistically signifi-
cant difference in performance based on AUPRC between the
models tested on Engel I patients. The significant differences
are accompanied by effect size represented by Cohen’s
d-value, for which the effect can be interpreted as negligible
(d<0.15), small (0.15< d <0.33), medium (0.33< d <
0.47), or large (d >0.47).>' Additionally, we assess whether
there is a significant performance difference between Engel I
patients and those in Engel II-IV groups with the Mann-
Whitney U-test.

A two-step heuristic approach was implemented to convert
continuous model output probabilities into binary decisions
recommending intervention. The discretization process was
defined as follows:

1. Probability thresholding: Initially, electrode contacts are
identified where the model’s output probability surpasses
a predefined global threshold.

2. Spatial neighbourhood selection: For each contact identi-
fied in the first step, all surrounding contacts within a pre-
defined resection radius are also selected for potential
intervention.

The intervention suggestions were compared with the clinic-
al gold standard using two key metrics. SEN that measures
the proportion of actual interventions correctly suggested
by the model and PPV, which assesses the proportion of
intervention suggestions that were correct.

Establishing the precise spatial correspondence between the
model’s predicted EZ and the intervened region is often chal-
lenging, particularly due to the probabilistic nature of the
model’s output and the discretized representation of elec-
trode contacts in MNI space. Therefore, in this study, we fo-
cus on the single electrode contact identified by the model as
having the highest epileptogenic probability and determine
its spatial distance to the nearest surgically resected contact.
Let P_max denote the MNI coordinates (x,y,z) of the most
epileptogenic contact, and let E_i represent the coordinates
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Table | GNN outperformed traditional NNs and baseline models in localizing intervention (resected or

thermocoagulated) electrode contacts

AUPRC AUROC

Model ID Model description ENGEL I (n=31) ENGELII-IV (n=49) ENGELI(n=31) ENGEL II-IV (n=49)

Random chance classifier 0.0965 0.0761 0.500 0.500

Spike rate (Janca detector) 0.4753 0.2623 0.8250 0.7859

HFO rate (RMS detector) 0.3797 0.2213 0.7732 0.7568
| GNN (all features + MNI + distance) 0.6897 0.3845 0.9105 0.8387
2 GNN (all features + distance) 0.6017 0.3861 0.8317 0.7710
3 NN (all features + MNI) 0.6383 0.3133 0.9044 0.7940
4 NN (all features) 0.4367 0.2976 0.8301 0.7783
5 GNN (spike rate only + MNI + distance) 0.6419 0.2775 0.9302 0.8506
6 GNN (spike rate only + distance) 0.5111 0.2589 0.8636 0.8107
7 NN (spike rate only + MNI) 0.5013 0.2327 0.8939 0.8002
8 NN (spike rate only) 0.4753 0.2623 0.8250 0.7859

Abbreviations: AUPRC, area under the precision-recall curve; AUROC, area under the receiver operating characteristic curve; GNN, graph neural network; NN, neural network; MNI,

Montreal Neurological Institute coordinates.

Table 2 P-value comparison of AUPRC scores in Engel | patients across models using the Wilcoxon signed-rank test

Model ID | 2 3 4 5 6 7 8
GNN (all features + MNI + distance) | 0.098 0.247 & 0.489 0.253 0.298 <
0.010 0.018
d=0.54 d=0.50
GNN (all features + distance) 2 0.900 & 0.797 0.688 0.779 0.063
0.023
d=0.48
NN (all features + MNI) 3 0.130 0.900 1.000 0.410 0.299
NN (all features) 4 0.163 0.135 0.568 0.309
GNN (spike rate only + MNI + distance) 5 0.779 0.405 0.388
GNN (spike rate only + distance) 6 0.721 0.120
NN (spike rate only + MNI) 7 0.650
8

NN (spike rate only)

P-values for statistical comparisons of AUPRC scores across all models from Table | are presented, calculated using the Wilcoxon signed-rank test. Statistically significant differences
(P < 0.05) are marked with *, and Cohen’s d-value represents effect sizes. AUPRC, area under the precision-recall curve; GNN, graph neural network; NN, neural network; MNI,

Montreal Neurological Institute coordinates.

of the i-th resected contact. The Euclidean distance is then
calculated as:

distance = mini €{resected} I Prmax — Ei”Z

In cases where the electrode contact with the highest epi-
leptogenic probability falls within the intervention zone,
the distance is zero. Otherwise, the distance corresponds to
the Euclidean distance (in millimetres) between that contact
and the nearest intervention contact. It is important to note
that this single-contact metric may be unsuitable for patients
with multifocal or bilateral epileptogenic foci (example in
discussion), given that it only considers the contact with
the highest predicted EZ probability.

Results

In this study, we assessed the effectiveness of GNNss in auto-
mating epilepsy surgery planning by integrating spatial

features, MRI data, and sEEG biomarkers. To enable direct
comparison with state-of-the-art methods, we benchmarked
our models against spike rate (Janca detector) and HFO rate
(RMS detector), using identical datasets (Table 1). Statistical
tests evaluating differences in AUPRC performance across
the proposed models are presented in Table 2.

The numerical results (Table 1) for AUROC and AUPRC
provide insights into the influence of individual features on
neural network performance, feature selection, and the ef-
fects of MNI coordinates (Table 3). These findings are elabo-
rated upon in the subsequent discussion.

We found that the GNN model (Table 1, Model 1), which
was trained on all available sEEG features and MNI coordi-
nates, achieved the highest AUPRC (0.6897) among all
tested configurations. Notably, its AUPRC improvement
was statistically significant (Table 2, Model 1 versus 4) com-
pared with the state-of-the-art NN model (Table 1,
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Table 3 Models trained exclusively on MNI coordinates achieved better-than-random performance, indicating

overtraining towards predominantly resected regions

AUPRC

AUROC

Model description ENGEL I (n=31)

ENGEL IV (n = 49)

ENGEL I (n=31) ENGEL II-IV (n = 49)

Random chance classifier 0.0965
GNN (MNI + distance) 0.2875
NN (MNI) 0.2732

0.1259
0.1573

0.0761 0.5 0.5
0.7571 0.6318
0.8276 0.7227

Performance metrics are shown for GNN and traditional NN models predicting intervention targets using MNI coordinates. AUPRC, area under the precision-recall curve; AUROC,
area under the receiver operating characteristic curve; GNN, graph neural network; NN, neural network; MNI, Montreal Neurological Institute coordinates.

Model 4), which scored an AUPRC of 0.4367. Similarly, the
GNN model also showed a statistically significant perform-
ance gain over spike rate—the best-performing single feature
(Table 2, Model 1 versus 8)—which achieved an AUPRC of
0.4753.

To explain the sources of the observed AUPRC perform-
ance gains of model 1—specifically, whether they arise
from differences in model architecture (GNN versus NN)
or from incorporating MNI coordinates—we conducted a
series of additional experiments using multiple model config-
urations (Models 2—4).

To evaluate the impact of spike rate on model perform-
ance, we tested additional model configurations (Models
5-8), revealing that Model 5 (reduced sEEG feature set)
achieved AUPRC performance comparable to the best-
performing Model 1. This confirms that spike rate is the pri-
mary driver for model decisions, while other sEEG features
play a supportive role in the model’s decision process.

To examine the effects on GNN architecture, we trained the
GNN model without MNI coordinates (Table 1, Model 2)
and compared its performance to the state-of-the-art NN ap-
proach (Table 1, Model 4). We observed a statistically sig-
nificant improvement in AUPRC with a large effect size
(Table 2, model 2 versus 4), indicating that incorporating
inter-contact distances enhances predictive performance.

To examine the effects of MNI coordinate inclusion, we
trained the NN model with MNI coordinates (Table 1,
Model 3) and compared its performance to the
state-of-the-art NN approach (Model 4). Although the
AUPRC for Model 3 increased by 0.2 (from 0.4367 to
0.6383), this improvement did not reach statistical signifi-
cance (Table 2, Model 3 versus 4).

Next, we examined whether models could be overtrained to
predict interventions in specific brain regions by training a

Table 4 Group statistics showing median of SEN, SPC,
and PPV of the best-performing model (GNN Model I,
Table 1) in ENGEL | patients across varying probability
thresholds and resection radii

Probability threshold

SEN/SPC/PPV (%) 0.75 0.8 0.85 0.90

3 66/92/44 57/93/51 35/95/51 28/97/64
6 69/91/44 64/93/44 42/94/46 29/96/55
9 70/89/41 66/91/44 48/93/42 33/95/51
2 71/88/37 68/90/36 50/92/42 38/93/46

Resection radius
(mm)

Probabilistic predictions of epileptogenicity were converted into binary decisions
through thresholding, with intervention suggested for contacts above the threshold.
The table presents SEN and PPV as functions of the probability threshold (0.75-0.90)
and the resection radius (3—12 mm). SEN, Sensitivity; SPC, Specificity; PPV, Positive
Predictive Value; GNN, Graph neural network.

model exclusively on MNI coordinates. While such an ap-
proach has limited practical utility, it effectively illustrates
how datasets with a large number of temporal lobe epilepsy
(TLE) patients can bias models towards temporal lobe
structures, such as the hippocampus. Notably, even this
coordinate-only model achieved AUPRC and AUROC scores
above random chance (Table 3). Indicating the capability of
models to overtrain towards specific MNI coordinates.

To translate probabilistic predictions of EZ into action-
able clinical decisions, we applied thresholding to the
output probabilities. This approach binarized the model
outputs, assigning a binary label to each contact, indicat-
ing whether it suggests intervention. The binary decisions
were evaluated by calculating SEN and PPV across vari-
ous probability thresholds and resection radii (defined as
the spatial neighbourhood of contacts exceeding the
threshold).

Table 4 summarizes the sensitivity (SEN), positive predict-
ive value (PPV), and specificity (SPC) of the best-performing
model (GNN Model 1 from Table 1) for Engel I patients.
These metrics were analysed across a range of probability
thresholds (0.75-0.90) and resection radii (3—12 mm). This
analysis highlights the trade-off between SEN and precision
in intervention planning. For instance, using a probability
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Figure 4 Performance metrics for best performing model
stratified by Engel outcomes. The left boxplot illustrates the
distribution of AUPRC values for the Engel | (N =31) and Engel II-
IV (N = 49) groups, with each dot representing an individual patient.
The Engel | group shows significantly higher AUPRC values
compared with the Engel IV group (P=0.015; Mann—Whitney
U-test), indicating a better alignment between model predictions
and clinical decisions (gold standard). The right boxplot depicts the
distances (in mm) between the contact with the highest predicted
epileptogenic probability (P_max) and the nearest contact targeted
for clinician intervention. The Engel | group has significantly lower
distances compared with the Engel -V group (P=0.03;
Mann—Whitney U-test), suggesting a closer match between model
predictions and actual intervention sites. EZ, Epileptogenic Zone,
P_max, Maximum probability of epileptogenicity, GNN, graph
neural network, MNI, Montreal Neurological Institute coordinate,
AUPRC, area under the precision-recall curve.

threshold of 0.8 with a radius of 9 mm resulted in a SEN of
66%, SPC of 91% and a PPV of 44%.

Figure 4 shows the distribution of AUPRC values and spatial
distances between the contact with the highest model-predicted
EZ probability (P_max) and the nearest intervention contact,
based on the best-performing model (GNN Model 1,
Table 1). The Engel I group has significantly higher AUPRC va-
lues, indicating better predictive performance compared with
the Engel II-1V group (P =0.015; Mann-Whitney U-test). For
Engel I patients, the median distance is zero, meaning that in
most cases, the P_max contact is within the intervention
zone. In contrast, Engel II-IV patients have a distance between
P_max and resection approximately 20 mm (median), suggest-
ing less accurate targeting of the intervention zone. The differ-
ences in distances are statistically significant (P = 0.03; Mann—
Whitney U-test). Both groups include some patients with dis-
tances greater than 40 mm, which often occurs when the pre-
dicted targets are on the opposite side of the brain,
particularly in cases of suspected bitemporal epilepsy. This phe-
nomenon is further explored in the ‘Discussion’ section.

BRAIN COMMUNICATIONS 2025, fcaf140 | |

Discussion

We proposed an application of GNNs for automating epi-
lepsy intervention planning by leveraging sEEG features,
MNI coordinates of the sEEG contacts, and spatial dis-
tances between the sEEG contacts derived from MRI data.

The effectiveness of GNNSs in localizing the EZ (defined as

sEEG contacts that were resected or thermocoagulated in

a clinical intervention) was retrospectively tested on a data-

set of 80 patients who underwent epilepsy surgery and the

proposed approach was compared with traditional NNs

(Table 1) and state-of-the-art methods (Table 5). Our find-

ings highlight the advantages of GNNs, particularly their

ability to account for the patient-specific SEEG implant-
ation topology in the analysis. This approach effectively al-
lows the model to account for the heterogeneity of
implantations, identified as one of the main challenges in de-
ploying quantitative methods in epilepsy surgery in a review
by Bernebei et al.*?

In this study, we showed that:

¢ GNNs provide a robust and flexible framework for inte-
grating multimodal features. This includes combining uni-
variate and bivariate SEEG features with intercontact
distances and other diverse data types.

* GNNs consistently outperformed standard NNs (mea-
sured by AUPRC and AUROC, Table 1). Additionally,
they surpassed other state-of-the-art approaches for
automatic EZ localization (Table 5), establishing their
effectiveness for automatic epilepsy surgery planning.

* Incorporating MNI coordinates of SEEG contacts into
the feature set boosts performance. However, it may
lead to overfitting specific brain structures, as shown in
Table 3.

¢ Including patients with both good and poor postsurgical
outcomes in model training improved the model’s level
of generalizability, highlighting the importance of diverse
training data.

Comparing artificial intelligence methods across different
datasets is generally challenging due to inherent dataset het-
erogeneity. For instance, variations in the number of im-
planted sEEG contacts and the number of contacts resected
significantly impact the random chance levels for the
AUPRC. Additionally, the inclusion criteria for the patient
cohort, such as the ratio of temporal to extratemporal cases,
significantly influences the reported performance.

Table 2 provides directly comparable results for EZ local-
ization based on automated detection of spike rate (Janca
detector) and HFO rate (RMS detector). The performance
of the HFO detector in this study is numerically comparable
to the findings reported by Gunnarsdottir et al., which docu-
mented an AUROC of 0.71 + 0.10.

Table 5 presents a comparison of our results with similar
methodologies previously published both within and outside
our research group. However, direct comparisons are
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Table 5 Comparison of state-of-the-art methods for localizing the epileptogenic zone from intracranial EEG across

partially overlapping and distinct datasets

Method Outcome N. patients AUPRC AUPRC (random chance) AUROC
Studies on partially overlapping datasets
GNN (this paper) Good 31 0.68 0.0965 091
Poor 49 0.38 0.0761 0.83
SVM (Cimbalnik at al.)® Good 9 0.842
Poor 7 0.776
SVM (Chybowski et al.)’ Good 25 0.49 0.062
Poor Not included
LR (Klimes et al.)® Good 18 0.608 0.098 0.827
Poor 32
Relative Entropy (Travnicek et al.)® Good 39 0.43 0.85
Poor Not included
Studies on other datasets
LR (Gunnarsdottir et al.)’ Good 28 0.77
Poor 37
Classification Trees (Bernabei et al.)'® Good 38 0.25
Poor 22 0.14
All 60 0.77
LR (Conrad et al.)"' Good 24 0.82
Poor 15
All 44 0.83

The proposed GNN method demonstrates the highest metric scores, achievingan AUPRC of 0.68 and AUROC of 0.91 for “Good” outcomes outperforming other approaches such as
SVM, LR, and Classification Trees. AUPRC, area under the precision-recall curve; AUROC, area under the receiver operating characteristic curve; GNN, graph neural network; SVM,

support vector machine; LR, logistic regression.

Assesing the impact of patient selection
on model performance
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Patient outcomes in training set

Figure 5 Impact of training data selection on model
performance. Comparison of the best-performing GNN model
trained on patients across all outcome groups (Engel -V, N = 80)
versus a model trained exclusively on good outcome patients (Engel
I, N=31). Each data point represents the AUPRC for an individual
Engel | outcome patient in a leave-one-out cross-validation
experiment. The left side illustrates AUPRC values when the model
is trained using both good (Engel I) and poor (Engel II-IV) outcome
patients, while the right side shows AUPRC when trained solely on
good outcome patients. Lines connect predictions for the same
patient across both models, emphasizing the within-subject
comparison. A statistically significant difference in performance is
observed, favouring the model trained on all outcomes (Wilcoxon
signed-rank test, P=0.014, Cohen’s d = 0.39).

challenging due to differences in dataset sizes, institutional
biases, and varying ratios of temporal to extratemporal cases
across studies.

Although including patients with both good and poor out-
comes in model training remains controversial due to con-
cerns about clinical data reliability, the surgical resections
in these cases were guided by key clinical indicators of
EZs, such as interictal spikes, focal slowing, and in particular
seizure onset areas. Our preliminary findings suggest that in-
corporating data from patients with good and poor out-
comes can enhance model performance relative to training
solely on patients with good outcomes. The Wilcoxon
signed-rank test was used to test for AUPRC differences in
Engel I groups, indicating a statistically significant difference
(P=0.011, Cohen’s d=0.42). Since surgeries for poor-
outcome patients are not undertaken randomly, we believe
these datasets also contain valuable information for model
training. Consequently, excluding patients with poor out-
comes substantially reduces the dataset size, which may com-
promise the model’s generalizability (Fig. 5). However, these
conclusions should be viewed as a hypothesis that requires
further investigation and validation on larger datasets.

In this paper, we used a GNN based on the graph attention
layer,”” where the adjacency matrix is derived from the
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spatial distances between contacts (a neighbourhood of
12 mm). Experimentally, we found that increasing the
threshold for spatial distance did not improve results. In gen-
eral, we recommend using less connected graphs since GNNs
have an over-smoothing problem,>® which refers to the phe-
nomenon that increasing node connections or model depth
leads to the averaging of the information, leading to decreas-
ing performances.

We would like to highlight the need to investigate other
GNN architectures, e.g. graph convolutional networks>* or
point cloud transformer architectures,®” that would also al-
low for integrating electrode topology and MNI coordinates
into classification models. Additionally, it is essential to ex-
plore whether other adjacency metrics, such as those based
on functional metrics, could yield more effective results.

In Table 3, we showed that training models solely on MNI
coordinates of sSEEG contacts achieved superior performance
compared with random chance classifiers. These models of-
ten identified the hippocampal area as a key region for resec-
tion in temporal epilepsy patients and predicted contacts in
this region as likely intervention targets. When these models
were evaluated in TLE DRE patients, they performed excep-
tionally well. This suggests that including MNI coordinates
might lead to model overtraining, which could result in re-
commending interventions in brain regions that are com-
monly targeted. This is an undesirable outcome in practice
because the models might predict interventions based on
the most frequently intervened structures in the training pa-
tient cohorts.

Employing the GNN without MNI coordinates (Model 2)
instead of the full model (Model 1), particularly in smaller
datasets where overfitting poses a significant challenge, ef-
fectively minimizes the clinically unwanted scenario of pre-
dicting intervention based on most frequently intervened
structures in the training patient cohorts. At the same time,
we believe that incorporating MNI coordinates may offer
significant advantages in large datasets, where the risk of
overtraining is likely to be less significant. Ultimately, the in-
clusion of MNI coordinates has the potential to enable mod-
els to train a ‘spatial dependent biomarker atlas’ facilitating
the differentiation of biomarkers as normal in some regions
while pathological in others. This study serves as a pilot ef-
fort, emphasizing the need for further investigation using
large, multicentric datasets.

This study used a relatively large dataset compared with ac-
tual state-of-the-art reports in sEEG studies (Table 5).
Although precautions were taken to prevent overfitting
(leave-one-out patient cross-validation and ensemble form-
ing), the dataset from a single centre still poses a risk to
institution-specific biases.

P. Nejedly et al.

From the sEEG monitoring point of view, we utilized only
30-minute-long recordings collected during the awake rest-
ing state. The evaluated features were aggregated over the
entire recording period. Future studies should explore the
temporal variability of these features over more extended
periods and across multiple behavioural states (e.g.
non-REM sleep). As was recently shown, the vigilance state
affects EZ localization results.”>®

The methodology faces challenges in processing data from
patients with suspected multifocal or bitemporal epilepsy.
For example, Fig. 6 highlights the model’s predictions for a pa-
tient who achieved an Engel I outcome following surgery. MRI
findings indicated left hippocampal sclerosis and sSEEG moni-
toring clinically identified the seizure onset zone within the
left hippocampus despite the presence of bilateral interictal epi-
leptiform discharges. However, the model, which exclusively
utilizes interictal data, predicted elevated probabilities bilat-
erally in the temporal region. The performance metrics for
this case revealed an AUROC of 0.90 and an AUPRC of
0.45. This discrepancy can be largely attributed to the model’s
lack of access to comprehensive clinical information. These
findings emphasize the need for next-generation models to in-
corporate additional data, such as seizure onset zones and
MRI findings, to improve accuracy and reliability.

Conclusion

The application of GNNs in epilepsy surgery planning shows
significant promise, particularly in enhancing the data and
information that the team of physicians can use to improve
precision and the outcomes of surgical interventions.
GNNis allow for integrating the patient-specific implantation
topology with sSEEG and MRI features. This integration re-
presents a valuable advancement over current state-of-
the-art methods, offering a pathway to more effective and
precise surgical intervention planning. Multicenter studies
should be conducted to assess the robustness and generaliz-
ability of GNN-based approaches to validate the benefits
of GNNs.
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Supplementary material is available at Brain Communications
online.
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