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Leveraging interictal multimodal features and 
graph neural networks for automated planning 
of epilepsy surgery
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Precise localization of the epileptogenic zone is pivotal for planning minimally invasive surgeries in drug-resistant epilepsy. Here, we 
present a graph neural network (GNN) framework that integrates interictal intracranial EEG features, electrode topology, and MRI 
features to automate epilepsy surgery planning. We retrospectively evaluated the model using leave-one-patient-out cross-validation 
on a dataset of 80 drug-resistant epilepsy patients treated at St. Anne’s University Hospital (Brno, Czech Republic), comprising 31 
patients with good postsurgical outcomes (Engel I) and 49 with poor outcomes (Engel II–IV). The GNN predictions demonstrated 
a significantly better (P < 0.05, Mann–Whitney-U test) area under the precision-recall curve in patients with good outcomes (area un
der the precision-recall curve: 0.69) compared with those with poor outcomes (area under the precision-recall curve: 0.33), indicating 
that the model captures clinically relevant targets in successful cases. In patients with poor outcomes, the graph neural network pro
posed alternative intervention sites that diverged from the original clinical plans, highlighting its potential to identify alternative thera
peutic targets. We show that topology-aware GNNs significantly outperformed (P  < 0.05, Wilcoxon signed-rank test) traditional 
neural networks while using the same intracranial EEG features, emphasizing the importance of incorporating implantation topology 
into predictive models.

These findings uncover the potential of GNNs to automatically suggest targets for epilepsy surgery, which can assist the clinical 
team during the planning process.
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Graphical Abstract

Introduction
For patients with drug-resistant epilepsy (DRE), minimally 
invasive surgery is a highly specialized procedure aimed at re
secting or functionally disconnecting the epileptogenic zone 
(EZ) from the healthy brain to prevent seizure generation. 
The primary goal of epilepsy surgery is to achieve seizure 
freedom or a significant reduction in seizure frequency and 
severity, thereby enhancing the patient’s quality of life. The 
success of such procedures is heavily dependent on accurate
ly identifying and targeting the EZ, which consists of the spe
cific areas of the brain indispensable for generating seizures.1

Epilepsy surgery planning is a complex task that involves 
integrating various types of data, such as clinical history, 
MRI, scalp EEG, PET, single-photon emission computed 
tomography imaging, neuropsychology, and intracranial 
EEG (iEEG). iEEG is an indispensable tool in the pre-surgical 
evaluation of epilepsy patients. Unlike traditional non- 
invasive methods, iEEG involves the placement of electrodes 
directly on the brain’s surface (electrocorticography) or 
within its tissue (stereo EEG, sEEG), providing a direct meas
ure of neural electrical activity from specific brain regions 
(e.g. 150–200 recording channels) with high temporal reso
lution (up to 32 kHz) spanning over extended recording 
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durations from several days to a few weeks. The primary use 
of iEEG is to capture ictal events and identify the seizure on
set zones. Additionally, analysing interictal events, including 
high-frequency oscillations2 (HFOs), very-high-frequency 
oscillations,3 epileptiform discharges,4 relative entropy,5

and other biomarkers provides evidence for the EZ. 
Nevertheless, the effectiveness of various interictal iEEG bio
markers for localizing the EZ remains a subject of ongoing 
research.

Traditional machine learning techniques, such as logistic 
regression and support vector machines (SVM), based on 
interictal iEEG biomarkers have shown promising results 
in the automatic localization of the EZ.6-11 For instance, 
Cimbalnik et al.6 employed a multi-feature SVM approach 
to predict the seizure onset zone. At the same time, 
Gunnarsdottir utilized features based on functional con
nectivity derived from linear time-invariant systems theory 
and a logistic regression classifier to localize the EZ.9

Multimodal approaches based on MRI and high-density 
EEG,12 or MRI–PET and HFOs13 were also used for EZ lo
calization. However, these methodologies lack the spatial 
information about iEEG implant topology that can prove 
critical for the accurate EZ localization. Such information 
can include the Montreal Neurological Institute (MNI) co
ordinates of electrode contacts or the distances between 
contacts.

In recent years, graph neural networks (GNNs) have 
emerged as a powerful tool for analysing complex networks 
represented as graphs.14 A graph is a mathematical object 
that consists of nodes and edges, where nodes represent en
tities and edges represent relationships between them. In 
EEG analysis, a graph can be constructed by representing 
each electrode contact as a node and the spatial distance or 
functional connectivity between electrodes as edges. This 
graph structure can capture the spatial and temporal rela
tionships between different brain regions and the EEG sig
nals recorded from them.

For example, applying GNNs to EEG analysis has shown 
promising results in various tasks, including spike detec
tion,15 seizure prediction,16 seizure detection,17-19 and sleep 
stage classification.20 The potential of GNNs in epilepsy sur
gery planning is further enhanced by their ability to process 
multimodal inputs, as highlighted in a recent review by 
Jehi.21 Integrating GNNs with multimodal features presents 
numerous challenges and opportunities, such as advancing 
graph construction methods and developing more sophisti
cated GNN architectures.

The optimal graph construction for iEEG analysis (e.g. 
based on spatial or functional connectivity) and feature 
sets describing graph nodes (combinations of iEEG and 
MRI) are currently unidentified. Moreover, it remains to 
be seen whether incorporating spatial MNI coordinates en
hances performance or introduces risks of overfitting. 
Including MNI coordinates could potentially bias the model 
towards predicting interventions in specific brain regions, 
such as the hippocampus, especially if the training dataset 
is heavily weighted with temporal epilepsy cases. Model 

predictions heavily influenced by MNI coordinates disre
garding iEEG features would lead to undesirable clinical 
outcomes.

This paper introduces a multimodal GNN model based on 
sEEG features (power in bands, spectral features, spike rate, 
spike propagation, and phase-amplitude coupling) and MRI 
features incorporating implantation topology (Euclidean dis
tance between electrode contacts, MNI coordinates, white 
matter, and grey matter distribution). The model is tested using 
leave-one-patient-out cross-validation on a cohort of 80 pa
tients with DRE. The study examines how different neural net
work (NN) architectures (traditional NN versus GNN) and 
subsets of features (especially the inclusion of MNI coordi
nates) affect the model’s performance in EZ localization and 
surgery planning.

Materials and methods
Study design
This retrospective study presents and evaluates a new 
deep-learning model using a GNN approach for localizing 
the EZ. Our investigation aims to fulfil the following objectives: 
1. Compare the performance of topology-aware GNNs 

model with traditional NNs
We compare GNN, which incorporates implantation 

topology represented by relative distances between con
tacts, with a traditional feature-based NN. Both models 
employ identical patient data, feature extraction pipe
lines, and training strategies. This allows us to investigate 
the effect of the inclusion of implant topology on EZ lo
calization performance.

2. Assess the impact of including MNI coordinates on model 
performance

We investigate whether including spatial information in 
the form of MNI coordinates of electrode contacts im
proves model performance or introduces overfitting. We 
evaluate multiple configurations—with and without MNI 
coordinates—and compare their performance using the 
area under the precision-recall curve (AUPRC) and the 
area under the receiver operating characteristic (AUROC).

3. Evaluate clinical alignment and spatial proximity to the 
resected regions

Finally, we measure how well the models’ predictions 
match the clinical gold standard in patient groups cate
gorized by Engel I (good outcome) and Engel II-IV 
(poor outcome). As part of this evaluation, we also quan
tify the distance between the model’s predictions for most 
epileptogenic electrode contacts and the surgically re
sected regions.

These objectives aim to evaluate whether incorporating im
plant topology and MNI coordinates within GNNs can en
hance the performance of EZ localization and potentially 
guide more effective surgical strategies in DRE. The work
flow of the study is illustrated in Fig. 1.
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Dataset description
The dataset from St Anne’s University Hospital, Brno, Czech 
Republic, was collected between 2011 and 2023 and con
sisted of a cohort of 124 patients. To be included in the 
study, patients had to satisfy the following criteria: 
1. Underwent pre-surgical sEEG monitoring.
2. Received epilepsy intervention: respective surgery, radio

frequency thermocoagulation (RFTC), or both.

3. Had a preoperative MRI and a post-implantation CT/ 
MRI for sEEG contact registration. Additionally, in cases 
of resection, a post-surgical MRI was required.

4. Had available follow-up (minimum 1 year) to assess 
whether the resection or RFTC at electrode contact sites 
resulted in a good outcome.22

The inclusion criteria were met by 80 patients (34 females, 
46 males, mean age 33 ± 10 years) diagnosed with DRE 

Figure 1 Schematics of the study workflow. (1) sEEG recordings are pre-processed, focusing on 30 min of awake resting interictal recording, 
and MNI coordinates of sEEG contacts are extracted from coregistered CT/MRI. (2) Features are extracted by calculating univariate features from 
the sEEG data and computing Euclidean distances between all channel pairs, excluding connections beyond 12 mm. (3) The data are structured 
into a graph where nodes represent the sEEG features and edges represent spatial distances between contacts. Nodes are assigned ground truth 
labels based on whether an intervention (resection or thermocoagulation) was performed on them or not. (4) The GNN is built from three graph 
attention layers that perform message passing with attention. Graph nodes representing sEEG contacts are classified as intervention versus no 
intervention by the network. (5) The models are trained and validated on the Saint Anne’s University Hospital cohort, with 80% of data used for 
training and 20% for validation. A patient is left out for testing to assess the model’s prediction performance. The leave one out cross validation 
process is repeated N times denoted by (Nx). (5) Comparisons are made between the GNN model and traditional NN across good (Engel I) and 
poor (Engel II–IV) outcome patient cohorts using the AUPRC and AUROC performance metrics.
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indicated for epilepsy surgery (n = 57, 24 Engel I, 33 Engel 
II-IV) or RFTC (n = 10, 5 Engel I, 5 Engel II-IV), or com
bined RFTC and surgery (n  = 13, 2 Engel I, 11 Engel 
II-IV). Epilepsy types were classified as temporal lobe (n  =  
46) or extratemporal (n  = 34). Histopathological findings 
included focal cortical dysplasia in 27 patients, hippocampal 
sclerosis in 13 patients, unspecified classifications in 
15 patients (mainly in the RFTC group), and other patholo
gies (e.g. gliosis, nodular heterotopia, post-traumatic, and 
post-meningoencephalitis changes) in the remaining pa
tients. A comprehensive dataset description is attached in 
Supplementary tables.

Patients with multifocal or bilateral lesions unsuitable for sur
gery were excluded due to the lack of a direct method to quan
tify model prediction performance numerically. The Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses 
chart in Fig. 2 illustrates the patient selection process.

Patient consent
The present study was carried out in accordance with ethical 
standards, and the study procedures were approved by 

St. Anne’s University Hospital Research Ethics Committee 
and the Ethics Committee of Masaryk University. All sub
jects gave written informed consent in accordance with the 
Declaration of Helsinki.

Intracranial EEG recordings
The sEEG dataset consists of 30-minute interictal sEEG re
cordings collected during an awake resting state according 
to standardized clinical protocol at St Anne’s University 
Hospital. The recordings are typically made on the second 
day following the implantation of electrodes, with the day 
of implantation considered day zero. Partial anti-seizure 
medication reduction usually occurs on the evening of 
Day 1 or the morning of Day 2. Recordings are consistently 
conducted at around 10 a.m. and at least an hour away 
from a seizure. The acquisition system used for the meas
urement in the hospital was a BrainScope system (M&I, 
BrainScope, Czech Republic). This system allows recording 
up to 192 channels with a maximum 25 kHz sampling rate 
and common reference montage. Raw data was filtered 
with a 2 kHz low-pass filter and down-sampled to 5 kHz 

Figure 2 The Preferred Reporting Items for Systematic Reviews and Meta-Analyses chart illustrates the study’s patient 
selection process. It details the steps from identifying potential participants (N = 124) to the final inclusion of patients in the analysis (N = 80). 
sEEG, stereo-EEG; ECoG, electrocorticography; VNS, vagus nerve stimulation; RFTC, radiofrequency thermocoagulation.
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to avoid aliasing. The electrodes used in all patients from the 
dataset were standard intracerebral multi-contact platinum 
sEEG electrodes (either DIXI or ALCIS), with each patient 
receiving 5–16 sEEG electrodes. The location and number 
of electrodes were selected based on clinical reasoning. The 
technical parameters of the electrodes were as follows: a 
diameter of 0.8 mm; a contact length of 2 mm; an intercon
tact distance of 1.5 mm; a contact surface area of 5 mm2; and 
a number of contacts being 5, 8, 10, 12, 15, and 18. All the 
electrodes were MRI compatible, and their position in the 
brain was verified by MRI or a combination of MRI and 
CT examination.

Dataset preparation
The dataset preparation involved several steps. First, a pre
operative anatomical MRI was coregistered into the post- 
implantation CT/MRI space using SPM software23 and nor
malized to the MNI space. The superposition image was 
shown using MRIcron software, and MNI coordinates of 
sEEG contacts were manually extracted. Next, a post- 
resection MRI was coregistered with the preoperative MRI 
to delineate the resection boundaries. We also used coregis
tration of the post-implantation CT/MRI images with post- 
resection MRI to determine the resected electrode contacts. 
A senior clinical neurologist inspected the coregistered 
MRI images, and the iEEG contacts within the resected 
area were identified and marked. Sagging and coregistration 
bias were accounted for. The resected or thermocoagulated 
contacts were assigned to the ‘intervention’ class (Binary 
1), and the untreated contacts were assigned to the ‘no inter
vention’ class (Binary 0). The sEEG contacts located outside 
of the brain were excluded from the analysis.

Feature extraction
The node features were calculated from raw sEEG data 
(30-min long recordings), where the complete feature set con
sisted of 6 groups (described below), accounting for 31 features 
(exact feature description in Supplementary material). The fea
tures were selected based on a literature review of currently 
available features that were proven effective for the localization 
of the EZ. The computational library (developed by our group) 
for iEEG feature extraction is publicly available at (https:// 
gitlab.com/bbeer_group/development/epycom/epycom).

Feature summary (details in Supplementary material): 
1. Power in bands and spectral features: They measure the 

overall signal power distribution in frequency bands. 
Features: Total power, Spectral Centroid, Power in bands 
(Low Delta: 0.1–1 Hz, Delta: 1–4 Hz, Theta: 4–8 Hz, 
Alpha: 8–12 Hz, Beta: 12–30 Hz, Gamma: 30–80 Hz, 
Powerline interference: 45–65 Hz (including both 50 
and 60 Hz), Ripple: 80–250 Hz, Fast ripple: 200– 
600 Hz), Delta–Beta ratio, Intra-patient normalized 
Delta power.

2. Phase amplitude coupling: This captures the relationship 
between the instant phase (angle of Hilbert Transform) of 

a low-frequency signal and the instant amplitude (ampli
tude of Hilbert Transform) of a high-frequency signal 
(phase amplitude coupling Delta: Gamma, Delta: 
Ripples, Delta: Fast ripples).

3. Spike rate: This includes absolute spike rates (spikes per 
minute) and the per-patient normalized rate on a scale 
(0–1). The spike detector was implemented using the 
methodology proposed by Janca et al.4

4. Functional connectivity metrics based on spike propaga
tion: Metrics derived from spike propagation. The fea
tures calculated from the spike propagation matrix were 
based on functional connectivity measures reported by 
Gunnarsdottir et al.9: source, sink, centrality, hub, and 
authority scores24 characterizing the role and influence 
of individual contacts within the network of spike 
propagation.

5. MNI coordinates: Electrode contact coordinates in the 
standardized MNI space.

6. White and grey matter probabilities: Probabilistic mea
sures indicate whether a contact is in white or grey matter 
based on WM/GM distribution atlas based on MNI 
coordinates.

The sEEG features were chosen to capture the local and glo
bal structure of sEEG activities. Therefore, some features are 
normalized per patient, while others are expressed in abso
lute values. For example, signal power is normalized per pa
tient, with 0.0 assigned to the contact with the lowest signal 
power and 1.0 to the contact with the highest signal power.

HFOs, a common interictal biomarker, were not 
included as a feature of the model as recent studies8,25 have 
demonstrated that HFOs do not provide additional informa
tion for localization compared with interictal spikes. 
However, localization results based solely on the HFO rate 
detected by the RMS detector26,27 are provided for 
comparison.

Graph construction
The graph was generated using sEEG features and the spatial 
distances between sEEG contacts. Node attributes were de
fined by the sEEG features, while edges represented the 
Euclidean distances between contacts. To determine the 
neighbourhood of each sEEG contact, we applied a heuristic 
threshold, considering any edge within 12 mm (including 
those connecting contacts from different electrodes) as part 
of the neighbourhood. The distance was determined using 
a centre-to-centre intercontact step of 3.5 mm, with the un
derstanding that the sEEG signal is primarily influenced by 
its surroundings (approximately distance of ±3 contacts, 
equating to 10.5 mm). To accommodate potential MRI/CT 
coregistration errors, this value was adjusted to 12 mm. 
This value is also supported by observations that sEEG is 
sensitive to neural activities approximately up to a distance 
of 10 mm.28 The ‘Discussion’ section further describes the ef
fects of distance on model performance.
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Model architecture
A simple GNN architecture utilizing generalized graph con
volution with attention29 was employed as the classification 
model. The model consisted of three layers with 32 hidden 
neurones and two output neurones since each node is classi
fied into one of two classes (intervention/no intervention). 
The network architecture was purposely set as very simple 
to prevent overfitting since the training dataset is small com
pared with datasets used in other scientific fields.

The dataset split into training, 
validation, and testing
In line with best practices in machine learning, a 
leave-one-patient-out cross-validation approach was em
ployed. This method ensures that data from the test patient 
does not influence the model’s training and validation 
phases, demonstrating the model’s generalizability and pro
viding unbiased results when applied to novel patients.

The rest of the patients’ data (N−1) were split into 5-folds, 
each containing 20% of the patients. Four folds were used 
for training, while 1-fold served as the validation set to detect 
overfitting and facilitate early stopping. This procedure was 
rotated five times, each time producing a new model. 
Together, these five models form a classification ensemble, 
effectively maximizing the information capacity of the 
dataset.

Model training and validation
The model was trained over 30 epochs using the 
Cross-Entropy Loss with rescaled weights (1:10 weights as
signed to negative:positive class) and the Adam optimizer, 
with a learning rate set at 0.005 and an L2 regularization 
weight decay of 0.0001. After each training epoch, the valid
ation loss and AUPRC were monitored, an early stopping 
strategy was used to select the model with the best validation 
score.

Model testing, evaluation, and 
statistical analysis
In the study, the output of the classification ensemble was de
rived from the average outputs of five cross-validation mod
els to predict intervention electrode contacts for a novel 
patient (leave-one-patient-out testing) completely excluded 
from training and validation. An example of model output 
and clinical gold standard is depicted in Fig. 3. The model 
output probabilities were compared with the clinical gold 
standard and quantified by reporting the AUPRC and 
AUROC to provide objective and comprehensive evaluation 
based on methodology from Hrtonova et al.30

Given the typical imbalance in EZ localization datasets, 
where ∼90% of electrode contacts are healthy and only 
10% are epileptogenic, AUROC scores can be misleading 
as they are heavily influenced by the majority class of 

non-epileptogenic contacts. That is why we emphasize the 
importance of the AUPRC, a metric that depends on sensitiv
ity (SEN) and positive predictive value (PPV), providing a 
more focused evaluation of the model’s performance. To en
sure a comprehensive evaluation of the model’s effectiveness 
in handling imbalanced datasets, the AUPRC and AUROC 
of a random chance classifier, which are essential to provide 
a direct comparison and context were reported. Chance-level 
performance in a binary classification task is an AUROC of 
0.5, and the AUPRC is equal to the proportion of positive 
samples in the dataset.

In the statistical analysis, we utilized the Wilcoxon 
signed-rank test to determine if there is a statistically signifi
cant difference in performance based on AUPRC between the 
models tested on Engel I patients. The significant differences 
are accompanied by effect size represented by Cohen’s 
d-value, for which the effect can be interpreted as negligible 
(d < 0.15), small (0.15 ≤  d  < 0.33), medium (0.33 ≤  d  <  
0.47), or large (d  ≥ 0.47).31 Additionally, we assess whether 
there is a significant performance difference between Engel I 
patients and those in Engel II–IV groups with the Mann– 
Whitney U-test.

Discretization of model outputs
A two-step heuristic approach was implemented to convert 
continuous model output probabilities into binary decisions 
recommending intervention. The discretization process was 
defined as follows: 
1. Probability thresholding: Initially, electrode contacts are 

identified where the model’s output probability surpasses 
a predefined global threshold.

2. Spatial neighbourhood selection: For each contact identi
fied in the first step, all surrounding contacts within a pre
defined resection radius are also selected for potential 
intervention.

The intervention suggestions were compared with the clinic
al gold standard using two key metrics. SEN that measures 
the proportion of actual interventions correctly suggested 
by the model and PPV, which assesses the proportion of 
intervention suggestions that were correct.

Evaluating spatial alignment of the 
predicted epileptogenic zone and 
intervention area
Establishing the precise spatial correspondence between the 
model’s predicted EZ and the intervened region is often chal
lenging, particularly due to the probabilistic nature of the 
model’s output and the discretized representation of elec
trode contacts in MNI space. Therefore, in this study, we fo
cus on the single electrode contact identified by the model as 
having the highest epileptogenic probability and determine 
its spatial distance to the nearest surgically resected contact. 
Let P_max denote the MNI coordinates (x,y,z) of the most 
epileptogenic contact, and let E_i represent the coordinates 

Graph neural networks in epilepsy surgery                                                                              BRAIN COMMUNICATIONS 2025, fcaf140 | 7



F
ig

ur
e 

3 
A

 c
as

e 
st

ud
y 

de
m

on
st

ra
ti

ng
 r

et
ro

sp
ec

ti
ve

 m
od

el
 p

re
di

ct
io

ns
 fo

r 
a 

pa
ti

en
t 

w
it

h 
an

 E
ng

el
 I

 o
ut

co
m

e.
 T

he
 t

op
 g

ra
ph

 u
se

s 
a 

co
lo

ur
 g

ra
di

en
t 

to
 r

ep
re

se
nt

 t
he

 p
re

di
ct

ed
 

pr
ob

ab
ili

ty
 o

f t
he

 e
pi

le
pt

og
en

ic
 z

on
e 

(E
Z

), 
w

he
re

 a
 v

al
ue

 o
f 1

 s
ig

ni
fie

s 
a 

re
co

m
m

en
de

d 
in

te
rv

en
tio

n 
si

te
, a

nd
 0

 in
di

ca
te

s 
he

al
th

y 
tis

su
e 

w
ith

 n
o 

ne
ed

 fo
r 

an
 in

te
rv

en
tio

n.
 T

he
 m

id
dl

e 
gr

ap
h 

sh
ow

s 
th

e 
go

ld
 s

ta
nd

ar
d,

 w
ith

 r
ed

 c
on

ta
ct

s 
re

pr
es

en
tin

g 
re

se
ct

ed
 a

re
as

 a
nd

 b
lu

e 
co

nt
ac

ts
 in

di
ca

tin
g 

no
n-

re
se

ct
ed

 a
re

as
. I

n 
th

e 
bo

tt
om

 g
ra

ph
, t

he
 x

-a
xi

s 
di

sp
la

ys
 in

di
vi

du
al

 s
te

re
o-

EE
G

 e
le

ct
ro

de
 c

on
ta

ct
s,

 
or

de
re

d 
by

 th
ei

r a
ve

ra
ge

 p
ro

ba
bi

lit
y 

as
 p

re
di

ct
ed

 b
y 

th
e 

cl
as

si
fic

at
io

n 
en

se
m

bl
e.

 E
rr

or
 b

ar
s r

ep
re

se
nt

 th
e 

st
an

da
rd

 d
ev

ia
tio

n 
of

 p
ro

ba
bi

lit
ie

s a
cr

os
s e

ns
em

bl
e 

m
od

el
s.

 R
ed

-m
ar

ke
d 

el
ec

tr
od

e 
co

nt
ac

ts
 

in
di

ca
te

 s
ur

gi
ca

lly
 r

es
ec

te
d 

ar
ea

s.
 T

he
 g

ra
ph

 is
 d

iv
id

ed
 in

to
 t

w
o 

se
ct

io
ns

, c
or

re
sp

on
di

ng
 t

o 
co

nt
ac

ts
 fr

om
 t

he
 le

ft
 a

nd
 r

ig
ht

 h
em

is
ph

er
es

.

8 | BRAIN COMMUNICATIONS 2025, fcaf140                                                                                                                    P. Nejedly et al.



of the i-th resected contact. The Euclidean distance is then 
calculated as:

distance = mini ∈{resected}‖Pmax − Ei‖2 

In cases where the electrode contact with the highest epi
leptogenic probability falls within the intervention zone, 
the distance is zero. Otherwise, the distance corresponds to 
the Euclidean distance (in millimetres) between that contact 
and the nearest intervention contact. It is important to note 
that this single-contact metric may be unsuitable for patients 
with multifocal or bilateral epileptogenic foci (example in 
discussion), given that it only considers the contact with 
the highest predicted EZ probability.

Results
In this study, we assessed the effectiveness of GNNs in auto
mating epilepsy surgery planning by integrating spatial 

features, MRI data, and sEEG biomarkers. To enable direct 
comparison with state-of-the-art methods, we benchmarked 
our models against spike rate (Janca detector) and HFO rate 
(RMS detector), using identical datasets (Table 1). Statistical 
tests evaluating differences in AUPRC performance across 
the proposed models are presented in Table 2.

The numerical results (Table 1) for AUROC and AUPRC 
provide insights into the influence of individual features on 
neural network performance, feature selection, and the ef
fects of MNI coordinates (Table 3). These findings are elabo
rated upon in the subsequent discussion.

Best performing model
We found that the GNN model (Table 1, Model 1), which 
was trained on all available sEEG features and MNI coordi
nates, achieved the highest AUPRC (0.6897) among all 
tested configurations. Notably, its AUPRC improvement 
was statistically significant (Table 2, Model 1 versus 4) com
pared with the state-of-the-art NN model (Table 1, 

Table 1 GNN outperformed traditional NNs and baseline models in localizing intervention (resected or 
thermocoagulated) electrode contacts

AUPRC AUROC

Model ID Model description ENGEL I (n = 31) ENGEL II–IV (n = 49) ENGEL I (n = 31) ENGEL II–IV (n = 49)

Random chance classifier 0.0965 0.0761 0.500 0.500
Spike rate (Janca detector) 0.4753 0.2623 0.8250 0.7859
HFO rate (RMS detector) 0.3797 0.2213 0.7732 0.7568

1 GNN (all features + MNI + distance) 0.6897 0.3845 0.9105 0.8387
2 GNN (all features + distance) 0.6017 0.3861 0.8317 0.7710
3 NN (all features + MNI) 0.6383 0.3133 0.9044 0.7940
4 NN (all features) 0.4367 0.2976 0.8301 0.7783
5 GNN (spike rate only + MNI + distance) 0.6419 0.2775 0.9302 0.8506
6 GNN (spike rate only + distance) 0.5111 0.2589 0.8636 0.8107
7 NN (spike rate only + MNI) 0.5013 0.2327 0.8939 0.8002
8 NN (spike rate only) 0.4753 0.2623 0.8250 0.7859

Abbreviations: AUPRC, area under the precision-recall curve; AUROC, area under the receiver operating characteristic curve; GNN, graph neural network; NN, neural network; MNI, 
Montreal Neurological Institute coordinates.

Table 2 P-value comparison of AUPRC scores in Engel I patients across models using the Wilcoxon signed-rank test

Model ID 1 2 3 4 5 6 7 8

GNN (all features + MNI + distance) 1 0.098 0.247 * 
0.010 

d = 0.54

0.489 0.253 0.298 * 
0.018 

d = 0.50
GNN (all features + distance) 2 0.900 * 

0.023 
d = 0.48

0.797 0.688 0.779 0.063

NN (all features + MNI) 3 0.130 0.900 1.000 0.410 0.299
NN (all features) 4 0.163 0.135 0.568 0.309
GNN (spike rate only + MNI + distance) 5 0.779 0.405 0.388
GNN (spike rate only + distance) 6 0.721 0.120
NN (spike rate only + MNI) 7 0.650
NN (spike rate only) 8

P-values for statistical comparisons of AUPRC scores across all models from Table 1 are presented, calculated using the Wilcoxon signed-rank test. Statistically significant differences 
(P < 0.05) are marked with *, and Cohen’s d-value represents effect sizes. AUPRC, area under the precision-recall curve; GNN, graph neural network; NN, neural network; MNI, 
Montreal Neurological Institute coordinates.
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Model 4), which scored an AUPRC of 0.4367. Similarly, the 
GNN model also showed a statistically significant perform
ance gain over spike rate—the best-performing single feature 
(Table 2, Model 1 versus 8)—which achieved an AUPRC of 
0.4753.

To explain the sources of the observed AUPRC perform
ance gains of model 1—specifically, whether they arise 
from differences in model architecture (GNN versus NN) 
or from incorporating MNI coordinates—we conducted a 
series of additional experiments using multiple model config
urations (Models 2–4).

To evaluate the impact of spike rate on model perform
ance, we tested additional model configurations (Models 
5–8), revealing that Model 5 (reduced sEEG feature set) 
achieved AUPRC performance comparable to the best- 
performing Model 1. This confirms that spike rate is the pri
mary driver for model decisions, while other sEEG features 
play a supportive role in the model’s decision process.

Effect of neural network architecture 
(graph neural network versus neural 
network)
To examine the effects on GNN architecture, we trained the 
GNN model without MNI coordinates (Table 1, Model 2) 
and compared its performance to the state-of-the-art NN ap
proach (Table 1, Model 4). We observed a statistically sig
nificant improvement in AUPRC with a large effect size 
(Table 2, model 2 versus 4), indicating that incorporating 
inter-contact distances enhances predictive performance.

Effect of Montreal Neurological 
Institute coordinates
To examine the effects of MNI coordinate inclusion, we 
trained the NN model with MNI coordinates (Table 1, 
Model 3) and compared its performance to the 
state-of-the-art NN approach (Model 4). Although the 
AUPRC for Model 3 increased by 0.2 (from 0.4367 to 
0.6383), this improvement did not reach statistical signifi
cance (Table 2, Model 3 versus 4).

Next, we examined whether models could be overtrained to 
predict interventions in specific brain regions by training a 

model exclusively on MNI coordinates. While such an ap
proach has limited practical utility, it effectively illustrates 
how datasets with a large number of temporal lobe epilepsy 
(TLE) patients can bias models towards temporal lobe 
structures, such as the hippocampus. Notably, even this 
coordinate-only model achieved AUPRC and AUROC scores 
above random chance (Table 3). Indicating the capability of 
models to overtrain towards specific MNI coordinates.

Output binarization
To translate probabilistic predictions of EZ into action
able clinical decisions, we applied thresholding to the 
output probabilities. This approach binarized the model 
outputs, assigning a binary label to each contact, indicat
ing whether it suggests intervention. The binary decisions 
were evaluated by calculating SEN and PPV across vari
ous probability thresholds and resection radii (defined as 
the spatial neighbourhood of contacts exceeding the 
threshold).

Table 4 summarizes the sensitivity (SEN), positive predict
ive value (PPV), and specificity (SPC) of the best-performing 
model (GNN Model 1 from Table 1) for Engel I patients. 
These metrics were analysed across a range of probability 
thresholds (0.75–0.90) and resection radii (3–12 mm). This 
analysis highlights the trade-off between SEN and precision 
in intervention planning. For instance, using a probability 

Table 3 Models trained exclusively on MNI coordinates achieved better-than-random performance, indicating 
overtraining towards predominantly resected regions

AUPRC AUROC

Model description ENGEL I (n = 31) ENGEL II–IV (n = 49) ENGEL I (n = 31) ENGEL II–IV (n = 49)

Random chance classifier 0.0965 0.0761 0.5 0.5
GNN (MNI + distance) 0.2875 0.1259 0.7571 0.6318
NN (MNI) 0.2732 0.1573 0.8276 0.7227

Performance metrics are shown for GNN and traditional NN models predicting intervention targets using MNI coordinates. AUPRC, area under the precision-recall curve; AUROC, 
area under the receiver operating characteristic curve; GNN, graph neural network; NN, neural network; MNI, Montreal Neurological Institute coordinates.

Table 4 Group statistics showing median of SEN, SPC, 
and PPV of the best-performing model (GNN Model 1, 
Table 1) in ENGEL I patients across varying probability 
thresholds and resection radii

SEN/SPC/PPV (%)

Probability threshold

0.75 0.8 0.85 0.90

Resection radius 
(mm)

3 66/92/44 57/93/51 35/95/51 28/97/64
6 69/91/44 64/93/44 42/94/46 29/96/55
9 70/89/41 66/91/44 48/93/42 33/95/51

12 71/88/37 68/90/36 50/92/42 38/93/46

Probabilistic predictions of epileptogenicity were converted into binary decisions 
through thresholding, with intervention suggested for contacts above the threshold. 
The table presents SEN and PPV as functions of the probability threshold (0.75–0.90) 
and the resection radius (3–12 mm). SEN, Sensitivity; SPC, Specificity; PPV, Positive 
Predictive Value; GNN, Graph neural network.
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threshold of 0.8 with a radius of 9 mm resulted in a SEN of 
66%, SPC of 91% and a PPV of 44%.

Alignment between predicted 
epileptogenic zone and intervention 
area
Figure 4 shows the distribution of AUPRC values and spatial 
distances between the contact with the highest model-predicted 
EZ probability (P_max) and the nearest intervention contact, 
based on the best-performing model (GNN Model 1, 
Table 1). The Engel I group has significantly higher AUPRC va
lues, indicating better predictive performance compared with 
the Engel II-IV group (P = 0.015; Mann–Whitney U-test). For 
Engel I patients, the median distance is zero, meaning that in 
most cases, the P_max contact is within the intervention 
zone. In contrast, Engel II–IV patients have a distance between 
P_max and resection approximately 20 mm (median), suggest
ing less accurate targeting of the intervention zone. The differ
ences in distances are statistically significant (P = 0.03; Mann– 
Whitney U-test). Both groups include some patients with dis
tances greater than 40 mm, which often occurs when the pre
dicted targets are on the opposite side of the brain, 
particularly in cases of suspected bitemporal epilepsy. This phe
nomenon is further explored in the ‘Discussion’ section.

Discussion
We proposed an application of GNNs for automating epi
lepsy intervention planning by leveraging sEEG features, 
MNI coordinates of the sEEG contacts, and spatial dis
tances between the sEEG contacts derived from MRI data. 
The effectiveness of GNNs in localizing the EZ (defined as 
sEEG contacts that were resected or thermocoagulated in 
a clinical intervention) was retrospectively tested on a data
set of 80 patients who underwent epilepsy surgery and the 
proposed approach was compared with traditional NNs 
(Table 1) and state-of-the-art methods (Table 5). Our find
ings highlight the advantages of GNNs, particularly their 
ability to account for the patient-specific sEEG implant
ation topology in the analysis. This approach effectively al
lows the model to account for the heterogeneity of 
implantations, identified as one of the main challenges in de
ploying quantitative methods in epilepsy surgery in a review 
by Bernebei et al.32

In this study, we showed that: 
• GNNs provide a robust and flexible framework for inte

grating multimodal features. This includes combining uni
variate and bivariate sEEG features with intercontact 
distances and other diverse data types.

• GNNs consistently outperformed standard NNs (mea
sured by AUPRC and AUROC, Table 1). Additionally, 
they surpassed other state-of-the-art approaches for 
automatic EZ localization (Table 5), establishing their 
effectiveness for automatic epilepsy surgery planning.

• Incorporating MNI coordinates of sEEG contacts into 
the feature set boosts performance. However, it may 
lead to overfitting specific brain structures, as shown in 
Table 3.

• Including patients with both good and poor postsurgical 
outcomes in model training improved the model’s level 
of generalizability, highlighting the importance of diverse 
training data.

State-of-the-art comparison
Comparing artificial intelligence methods across different 
datasets is generally challenging due to inherent dataset het
erogeneity. For instance, variations in the number of im
planted sEEG contacts and the number of contacts resected 
significantly impact the random chance levels for the 
AUPRC. Additionally, the inclusion criteria for the patient 
cohort, such as the ratio of temporal to extratemporal cases, 
significantly influences the reported performance.

Table 2 provides directly comparable results for EZ local
ization based on automated detection of spike rate (Janca 
detector) and HFO rate (RMS detector). The performance 
of the HFO detector in this study is numerically comparable 
to the findings reported by Gunnarsdottir et al., which docu
mented an AUROC of 0.71 ± 0.10.

Table 5 presents a comparison of our results with similar 
methodologies previously published both within and outside 
our research group. However, direct comparisons are 

Figure 4 Performance metrics for best performing model 
stratified by Engel outcomes. The left boxplot illustrates the 
distribution of AUPRC values for the Engel I (N = 31) and Engel II– 
IV (N = 49) groups, with each dot representing an individual patient. 
The Engel I group shows significantly higher AUPRC values 
compared with the Engel II–IV group (P = 0.015; Mann–Whitney 
U-test), indicating a better alignment between model predictions 
and clinical decisions (gold standard). The right boxplot depicts the 
distances (in mm) between the contact with the highest predicted 
epileptogenic probability (P_max) and the nearest contact targeted 
for clinician intervention. The Engel I group has significantly lower 
distances compared with the Engel II–IV group (P = 0.03; 
Mann–Whitney U-test), suggesting a closer match between model 
predictions and actual intervention sites. EZ, Epileptogenic Zone, 
P_max, Maximum probability of epileptogenicity, GNN, graph 
neural network, MNI, Montreal Neurological Institute coordinate, 
AUPRC, area under the precision-recall curve.
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challenging due to differences in dataset sizes, institutional 
biases, and varying ratios of temporal to extratemporal cases 
across studies.

Impact of patient selection on model 
performance
Although including patients with both good and poor out
comes in model training remains controversial due to con
cerns about clinical data reliability, the surgical resections 
in these cases were guided by key clinical indicators of 
EZs, such as interictal spikes, focal slowing, and in particular 
seizure onset areas. Our preliminary findings suggest that in
corporating data from patients with good and poor out
comes can enhance model performance relative to training 
solely on patients with good outcomes. The Wilcoxon 
signed-rank test was used to test for AUPRC differences in 
Engel I groups, indicating a statistically significant difference 
(P = 0.011, Cohen’s d = 0.42). Since surgeries for poor- 
outcome patients are not undertaken randomly, we believe 
these datasets also contain valuable information for model 
training. Consequently, excluding patients with poor out
comes substantially reduces the dataset size, which may com
promise the model’s generalizability (Fig. 5). However, these 
conclusions should be viewed as a hypothesis that requires 
further investigation and validation on larger datasets.

Graph construction, model 
architecture
In this paper, we used a GNN based on the graph attention 
layer,29 where the adjacency matrix is derived from the 

Table 5 Comparison of state-of-the-art methods for localizing the epileptogenic zone from intracranial EEG across 
partially overlapping and distinct datasets

Method Outcome N. patients AUPRC AUPRC (random chance) AUROC

Studies on partially overlapping datasets
GNN (this paper) Good 31 0.68 0.0965 0.91

Poor 49 0.38 0.0761 0.83
SVM (Cimbalnik at al.)6 Good 9 0.842

Poor 7 0.776
SVM (Chybowski et al.)7 Good 25 0.49 0.062

Poor Not included
LR (Klimes et al.)8 Good 18 0.608 0.098 0.827

Poor 32
Relative Entropy (Travnicek et al.)5 Good 39 0.43 0.85

Poor Not included
Studies on other datasets

LR (Gunnarsdottir et al.)9 Good 28 0.77
Poor 37

Classification Trees (Bernabei et al.)10 Good 38 0.25
Poor 22 0.14
All 60 0.77

LR (Conrad et al.)11 Good 24 0.82
Poor 15
All 44 0.83

The proposed GNN method demonstrates the highest metric scores, achieving an AUPRC of 0.68 and AUROC of 0.91 for “Good” outcomes outperforming other approaches such as 
SVM, LR, and Classification Trees. AUPRC, area under the precision-recall curve; AUROC, area under the receiver operating characteristic curve; GNN, graph neural network; SVM, 
support vector machine; LR, logistic regression.

Figure 5 Impact of training data selection on model 
performance. Comparison of the best-performing GNN model 
trained on patients across all outcome groups (Engel I–V, N = 80) 
versus a model trained exclusively on good outcome patients (Engel 
I, N = 31). Each data point represents the AUPRC for an individual 
Engel I outcome patient in a leave-one-out cross-validation 
experiment. The left side illustrates AUPRC values when the model 
is trained using both good (Engel I) and poor (Engel II–IV) outcome 
patients, while the right side shows AUPRC when trained solely on 
good outcome patients. Lines connect predictions for the same 
patient across both models, emphasizing the within-subject 
comparison. A statistically significant difference in performance is 
observed, favouring the model trained on all outcomes (Wilcoxon 
signed-rank test, P = 0.014, Cohen’s d = 0.39).
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spatial distances between contacts (a neighbourhood of 
12 mm). Experimentally, we found that increasing the 
threshold for spatial distance did not improve results. In gen
eral, we recommend using less connected graphs since GNNs 
have an over-smoothing problem,33 which refers to the phe
nomenon that increasing node connections or model depth 
leads to the averaging of the information, leading to decreas
ing performances.

We would like to highlight the need to investigate other 
GNN architectures, e.g. graph convolutional networks34 or 
point cloud transformer architectures,35 that would also al
low for integrating electrode topology and MNI coordinates 
into classification models. Additionally, it is essential to ex
plore whether other adjacency metrics, such as those based 
on functional metrics, could yield more effective results.

Effect of Montreal Neurological 
Institute coordinates
In Table 3, we showed that training models solely on MNI 
coordinates of sEEG contacts achieved superior performance 
compared with random chance classifiers. These models of
ten identified the hippocampal area as a key region for resec
tion in temporal epilepsy patients and predicted contacts in 
this region as likely intervention targets. When these models 
were evaluated in TLE DRE patients, they performed excep
tionally well. This suggests that including MNI coordinates 
might lead to model overtraining, which could result in re
commending interventions in brain regions that are com
monly targeted. This is an undesirable outcome in practice 
because the models might predict interventions based on 
the most frequently intervened structures in the training pa
tient cohorts.

Employing the GNN without MNI coordinates (Model 2) 
instead of the full model (Model 1), particularly in smaller 
datasets where overfitting poses a significant challenge, ef
fectively minimizes the clinically unwanted scenario of pre
dicting intervention based on most frequently intervened 
structures in the training patient cohorts. At the same time, 
we believe that incorporating MNI coordinates may offer 
significant advantages in large datasets, where the risk of 
overtraining is likely to be less significant. Ultimately, the in
clusion of MNI coordinates has the potential to enable mod
els to train a ‘spatial dependent biomarker atlas’ facilitating 
the differentiation of biomarkers as normal in some regions 
while pathological in others. This study serves as a pilot ef
fort, emphasizing the need for further investigation using 
large, multicentric datasets.

Strengths and limitations
This study used a relatively large dataset compared with ac
tual state-of-the-art reports in sEEG studies (Table 5). 
Although precautions were taken to prevent overfitting 
(leave-one-out patient cross-validation and ensemble form
ing), the dataset from a single centre still poses a risk to 
institution-specific biases.

From the sEEG monitoring point of view, we utilized only 
30-minute-long recordings collected during the awake rest
ing state. The evaluated features were aggregated over the 
entire recording period. Future studies should explore the 
temporal variability of these features over more extended 
periods and across multiple behavioural states (e.g. 
non-REM sleep). As was recently shown, the vigilance state 
affects EZ localization results.7,36

The methodology faces challenges in processing data from 
patients with suspected multifocal or bitemporal epilepsy. 
For example, Fig. 6 highlights the model’s predictions for a pa
tient who achieved an Engel I outcome following surgery. MRI 
findings indicated left hippocampal sclerosis and sEEG moni
toring clinically identified the seizure onset zone within the 
left hippocampus despite the presence of bilateral interictal epi
leptiform discharges. However, the model, which exclusively 
utilizes interictal data, predicted elevated probabilities bilat
erally in the temporal region. The performance metrics for 
this case revealed an AUROC of 0.90 and an AUPRC of 
0.45. This discrepancy can be largely attributed to the model’s 
lack of access to comprehensive clinical information. These 
findings emphasize the need for next-generation models to in
corporate additional data, such as seizure onset zones and 
MRI findings, to improve accuracy and reliability.

Conclusion
The application of GNNs in epilepsy surgery planning shows 
significant promise, particularly in enhancing the data and 
information that the team of physicians can use to improve 
precision and the outcomes of surgical interventions. 
GNNs allow for integrating the patient-specific implantation 
topology with sEEG and MRI features. This integration re
presents a valuable advancement over current state-of- 
the-art methods, offering a pathway to more effective and 
precise surgical intervention planning. Multicenter studies 
should be conducted to assess the robustness and generaliz
ability of GNN-based approaches to validate the benefits 
of GNNs.
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online.
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12. Říha P, Doležalová I, Mareček R, et al. Multimodal combination of 
neuroimaging methods for localizing the epileptogenic zone in 
MR-negative epilepsy. Sci Rep. 2022;12(1):15158.

13. Li X, Yu T, Ren Z, et al. Localization of the epileptogenic zone by 
multimodal neuroimaging and high-frequency oscillation. Front 
Hum Neurosci. 2021;15:677840.

14. Zhou J, Cui G, Hu S, et al. Graph neural networks: A review of 
methods and applications. AI Open. 2020;1:57-81.

15. Mohammed AH, Cabrerizo M, Pinzon A, Yaylali I, Jayakar P, 
Adjouadi M. Graph neural networks in EEG spike detection. Artif 
Intell Med. 2023;145:102663.

16. Lian Q, Qi Y, Pan G, Wang Y. Learning graph in graph convolu
tional neural networks for robust seizure prediction. J Neural 
Eng. 2020;17(3):035004.

17. Li Z, Hwang K, Li K, Wu J, Ji T. Graph-generative neural net
work for EEG-based epileptic seizure detection via discovery of 
dynamic brain functional connectivity. Sci Rep. 2022;12(1): 
18998.

18. Zhao Y, Zhang G, Dong C, Yuan Q, Xu F, Zheng Y. Graph atten
tion network with focal loss for seizure detection on electroenceph
alography signals. Int J Neural Syst. 2021;31(7):2150027.

19. Díaz-Montiel AA, Lankarany M. Graph Representations of iEEG 
Data for Seizure Detection with Graph Neural Networks. 
bioRxiv. [Preprint] doi:10.1101/2023.06.02.543277

20. Jia Z, Lin Y, Wang J, et al. Graphsleepnet: Adaptive spatial-temporal 
graph convolutional networks for sleep stage classification. In: 
IJCAI’20: Twenty-Ninth International Joint Conference on Artificial 
Intelligence Yokohama Yokohama, Japan, January 7-15, 2021. 
International Joint Conferences on Artificial Intelligence Organization. 
2020:1324-1330.

21. Jehi L. Machine learning for precision epilepsy surgery. Epilepsy 
Curr. 2023;23(2):78-83.

22. Engel J. Surgical treatment of the epilepsies. 2nd edn. Raven Press; 
1993.

23. Penny WD, Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE, eds. 
Statistical Parametric Mapping: The Analysis of Functional 
Brain Images. 2006. Accessed 15 August 2024. https://shop. 
elsevier.com/books/statistical-parametric-mapping-the-analysis-of- 
functional-brain-images/penny/978-0-12-372560-8

24. Kleinberg JM. Authoritative sources in a hyperlinked environment. 
Journal of the ACM (JACM). 1999;46:604-632.

25. Roehri N, Pizzo F, Lagarde S, et al. High-frequency oscillations are 
not better biomarkers of epileptogenic tissues than spikes. Ann 
Neurol. 2018;83(1):84-97.

26. von Ellenrieder N, Andrade-Valença LP, Dubeau F, Gotman J. 
Automatic detection of fast oscillations (40–200 Hz) in scalp EEG 
recordings. Clin Neurophysiol. 2012;123(4):670-680.

27. von Ellenrieder N, Frauscher B, Dubeau F, Gotman J. Interaction 
with slow waves during sleep improves discrimination of physio
logic and pathologic high-frequency oscillations (80–500 Hz). 
Epilepsia. 2016;57(6):869-878.

28. von Ellenrieder N, Khoo HM, Dubeau F, Gotman J. What do intra
cerebral electrodes measure? Clin Neurophysiol. 2021;132(5): 
1105-1115.

29. Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y. 
Graph Attention Networks. arXiv.Org [Preprint]. 2017. http:// 
arxiv.org/abs/1710.10903

30. Hrtonova V, Nejedly P, Travnicek V, et al. Metrics for evaluation of 
automatic epileptogenic zone localization in intracranial electro
physiology. Clin Neurophysiol. 2025;169:33-46.

31. Hess M, Kromney J. Robust confidence intervals for effect sizes: A 
comparative study of Cohen’s d and cliff’s Delta under non- 
normality and heterogeneous variances. In: Paper Presented at 
the Annual Meeting of the American Educational Research 
Association; 2004.

32. Bernabei JM, Li A, Revell AY, et al. Quantitative approaches to 
guide epilepsy surgery from intracranial EEG. Brain. 2023;146(6): 
2248-2258.

33. Rusch TK, Bronstein MM, Mishra S. A Survey on Oversmoothing in 
Graph Neural Networks. arXiv [Preprint]. doi:10.48550/arXiv. 
2303.10993

34. Kipf TN, Welling M. Semi-Supervised Classification with Graph 
Convolutional Networks. arXiv [Preprint]. doi:10.48550/arXiv. 
1609.02907

35. Guo MH, Cai JX, Liu ZN, Mu TJ, Martin RR, Hu SM. PCT: Point 
cloud transformer. Comput Vis Media. 2021;7(2):187-199.

36. Klimes P, Cimbalnik J, Brazdil M, et al. NREM sleep is the state of 
vigilance that best identifies the epileptogenic zone in the interictal 
electroencephalogram. Epilepsia. 2019;60(12):2404-2415.

Graph neural networks in epilepsy surgery                                                                            BRAIN COMMUNICATIONS 2025, fcaf140 | 15

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcaf140#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcaf140#supplementary-data
https://gitlab.com/bbeer_group/development/epycom/epycom
https://gitlab.com/bbeer_group/development/epycom/epycom
https://doi.org/10.1101/2023.06.02.543277
https://shop.elsevier.com/books/statistical-parametric-mapping-the-analysis-of-functional-brain-images/penny/978-0-12-372560-8
https://shop.elsevier.com/books/statistical-parametric-mapping-the-analysis-of-functional-brain-images/penny/978-0-12-372560-8
https://shop.elsevier.com/books/statistical-parametric-mapping-the-analysis-of-functional-brain-images/penny/978-0-12-372560-8
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1710.10903
https://doi.org/10.48550/arXiv.2303.10993
https://doi.org/10.48550/arXiv.2303.10993
https://doi.org/10.48550/arXiv.1609.02907
https://doi.org/10.48550/arXiv.1609.02907

	Leveraging interictal multimodal features and graph neural networks for automated planning of epilepsy surgery
	Introduction
	Materials and methods
	Study design
	Dataset description
	Patient consent
	Intracranial EEG recordings
	Dataset preparation
	Feature extraction
	Graph construction
	Model architecture
	The dataset split into training, validation, and testing
	Model training and validation
	Model testing, evaluation, and statistical analysis
	Discretization of model outputs
	Evaluating spatial alignment of the predicted epileptogenic zone and intervention area

	Results
	Best performing model
	Effect of neural network architecture (graph neural network versus neural network)
	Effect of Montreal Neurological Institute coordinates
	Output binarization
	Alignment between predicted epileptogenic zone and intervention area

	Discussion
	State-of-the-art comparison
	Impact of patient selection on model performance
	Graph construction, model architecture
	Effect of Montreal Neurological Institute coordinates
	Strengths and limitations

	Conclusion
	Supplementary material
	Funding
	Competing interests
	Data availability
	References


